
DevOps
for Digital
Leaders

Aruna Ravichandran
Kieran Taylor
Peter Waterhouse

CA Press

Reignite Business with a Modern
DevOps-Enabled Software Factory

 DEVOPS FOR DIGITAL
LEADERS

 REIGNITE BUSINESS WITH A MODERN
DEVOPS-ENABLED SOFTWARE FACTORY

 Aruna Ravichandran
Kieran Taylor

Peter Waterhouse

DevOps for Digital Leaders: Reignite Business with a Modern DevOps-Enabled
Software Factory

Aruna Ravichandran Kieran Taylor Peter Waterhouse
CA Technologies, Cupertino, Winchester, Massachusetts Blackburn, Victoria
California, USA USA Australia

ISBN-13 (pbk): 978-1-4842-1841-9 ISBN-13 (electronic): 978-1-4842-1842-6
DOI 10.1007/978-1-4842-1842-6

Library of Congress Control Number: 2016958432

Copyright © 2016 by CA. All rights reserved. All trademarks, trade names, service marks and
logos referenced herein belong to their respective companies.

The statements and opinions expressed in this book are those of the author and are not neces-
sarily those of CA, Inc. (“CA”).

 ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, elec-
tronically without modification, for non-commercial purposes only.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no inten-
tion of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

Managing Director: Welmoed Spahr
Acquisitions Editor: Robert Hutchinson
Developmental Editor: Laura Berendson
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black, Louise

Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com .

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

The information in this book is distributed on an “as is” basis, without warranty. Although pre-
cautions have been taken in the preparation of this work, the author, Apress and CA shall have
no liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales

 Advance Praise for DevOps for Digital Leaders

 “Everyone on the DevOps journey wants to see how others solved similar
problems in different business contexts. This book does a great job in chroni-
cling how organizations have applied DevOps patterns and articulating the
fantastic value they’ve created.”

 —Gene Kim, co-author of The Phoenix Project and DevOps Handbook

 “DevOps for Digital Leaders addresses an important gap in the literature, pre-
senting DevOps from a business and organizational perspective rather than
the more common technology and process angles. Aruna, Kieren, and Peter
have done a great job of assembling, presenting, and addressing the core chal-
lenges of a transition to DevOps. Not only do they look at the impact on the
“path to production” of testing, deployment, and operational support, but they
tackle the complex topic of API design and even present the ROI justification
for DevOps, citing Dr. Nicole Forsgren’s groundbreaking work with the State
of DevOps reports. This book should be required reading for technology
leaders wondering about the impact DevOps will have on their organization.”

 —Dan North, DevOps and Continuous Delivery pioneer,
Principal at Dan North & Associates Ltd.

 “If DevOps for Digital Leaders had existed several years ago when we started
on our DevOps journey, it would have made our transition significantly easier.
This book is an excellent resource for both experienced and new DevOps
practitioners—more than just a ‘how-to’, it provides valuable insights and
real-world examples to which everyone can relate.”

 —Dana Edwards, CTO/EVP, MUFG Union Bank

 “As DevOps has risen to the top of the mind with IT departments big and small,
new and old, there has been much written about the subject. Unfortunately,
too much of it has been about ‘what is DevOps’ or shrouded in almost a
Zen-like philosophy. What has been missing is the practical ‘why’ and ‘how
to’ for practitioners. What’s missing is a guide that will grow dog-eared and
highlighted, with real-world examples and advice that practitioners will carry
with them and go back to again and again. DevOps for Digital Leaders is that
book. If you are looking for real-world examples and guidance on turning your
organization into a high-performing IT operation, this is a must-have book for
your library.”

 —Alan Shimel, Editor-in-Chief, DevOps.com

 “DevOps is no longer just a concept. This book by Aruna, Kieran, and Peter
places DevOps squarely in the real world. It is a comprehensive guide to help
you discover the origins of DevOps, realize the challenges, and gain a practi-
cal understanding of where DevOps fits into your development program, IT
operations, and business. It’s a must-have book for the business side to truly
comprehend DevOps, but also a great read for the IT community to under-
stand how their work ultimately impacts the business. And most importantly,
the book is loaded with valuable, actionable tips to help you navigate your
DevOps journey.”

 —Pete Goldin, Editor and Publisher, APMdigest and DEVOPSdigest

 I would like to dedicate my fi rst book to my mother,
Sampurnam Th yagarajan, who has always been my

inspiration, who stood by me every step of the way.
I am who I am today because of her unconditional

love and dedication. I love you Amma.

—Aruna

 I dedicate this book to all the true IT believers and
practitioners. Only from your collective eff ort can

organizations build the generative DevOps culture
needed to shape success. You know who you are!

—Peter

 I dedicate this book to those who work to make the
world a better place for future generations.

—Kieran

Contents
Foreword . ix

About the Authors . xi

Acknowledgments . xv

Part I: DevOps: Conflict to Collaboration. 1

Chapter 1: DevOps in the Ascendency . 3

Chapter 2: IT Impasse . 15

Chapter 3: DevOps Foundations . 27

Part II: Essential DevOps Tooling . 49

Chapter 4: Build . 51

Chapter 5: Test . 69

Chapter 6: Deploy . 87

Chapter 7: Manage . 105

Part III: Tuning and Continuous Improvement 123

Chapter 8: Practical DevOps . 125

Chapter 9: DevOps and Real World ROI . 139

Chapter 10: DevOps Finetuning . 151

Index . 171

 Foreword
 As a software executive who’s worn many hats across sales, services, develop-
ment, support, operations, and even IT, I have a fairly unique perspective when
I talk to business leaders about their technology strategies. Though the name
DevOps didn’t exist until fairly recently, the need for partnership between
development and operations teams has always been around. Today DevOps
has shifted from an emerging movement to a critical component of most
enterprises’ digital transformation strategy. In other words, DevOps is moving
from the Kanban board to the board of directors.

 While the idea behind this kind of collaboration is common sense, there are
definitely challenges to driving mainstream adoption for DevOps. In my con-
versations with C-suite executives, they invariably ask for two things: docu-
mented best practices and actual case studies that they can take to their
internal stakeholders.

 That’s why this book is so relevant right now. It’s more than just theory or a
summary of the ideal DevOps toolchain; it’s a set of practical insights and bet-
ter practices that came about through many, many interviews and interactions
with frontline practitioners about what works and what doesn’t work in the
real world.

 Aruna, Kieran, and Peter are career high tech marketers who shed light on
the cultural and technological challenges to driving adoption for a DevOps
philosophy across the software development lifecycle. With this book, they
were able to bring together solid, actionable advice for anyone beginning their
DevOps journey, including recommendations on how to measure success and
return on investment from a business standpoint.

 The days of organizational silos are coming to an end. Communication, col-
laboration, and automation are blurring the lines between development, QA,
and IT Operations—and enterprises are embracing agile and DevOps prac-
tices to increase software release frequency while improving overall quality.
I hope that in reading this, you find ways to optimize your technology strategy,
investments, and business outcomes.

 —Adam Elster, President of Global Field Operations, CA Technologies

 About the Authors
 Aruna Ravichandran is Vice President of
DevOps Product Marketing and Solutions
Marketing at CA Technologies. She has over
20 years of experience in building and mar-
keting products in various markets, such as IT
Operations Management (APM, Infrastructure
Management, Service Management, Cloud
Management, Analytics, Log Management, and
Data Center Infrastructure Management),
Continuous Delivery, Test Automation, Security,
and SDN. In her current role, she leads the
product and solutions marketing, strategy, mar-
ket segmentation, and messaging, positioning,
competitive, sales enablement across all DevOps

products, which spans revenues over $1B. She is the key spokesperson for
DevOps with analysts, press, customers, and major events.

 Prior to CA, she has worked at Juniper Networks and Hewlett-Packard
wherein she led executive leadership roles in marketing and engineering.

 She frequently blogs for various publications such as SYS-CON Media, Wired
Insights, Tech Target, Information Week, DevOpsDigest.com, DevOps.com, and
Cloud Tweaks, to name a few. She frequently presents at various industry
conferences and has presented at Gartner Symposium 2016, Gartner ITOM
2014, Gartner Data Center 2014, DevOps Summit 2014, Cloud Expo 2014,
CA World 2014 and 2015, and HP Discover (2008-2012). She has authored
several articles and publications as well.

 Aruna earned her Master’s in Computer Engineering and MBA from Santa
Clara University.

 In 2016, Aruna was named one of Top 100 Most Influential Women in Silicon
Valley by the San Jose Business Journal and the 2016 Most Powerful and
Influential Woman Award by the National Diversity Council .

http://www.bizjournals.com/sanjose/print-edition/2016/04/08/ca-technologies-aruna-ravichandran-women-of.html
http://www.bizjournals.com/sanjose/print-edition/2016/04/08/ca-technologies-aruna-ravichandran-women-of.html
http://www.nationaldiversitycouncil.org/professionals-to-be-honored-at-the-6th-annual-tri-state-diversity-and-leadership-conference/
http://www.nationaldiversitycouncil.org/professionals-to-be-honored-at-the-6th-annual-tri-state-diversity-and-leadership-conference/
http://www.nationaldiversitycouncil.org/

About the Authorsxii

 Kieran Taylor has 20 years of high-tech product
marketing experience with a focus on applica-
tion performance management, cloud comput-
ing, content delivery networking, and wide area
network technologies.

 He is presently Senior Director of Product
and Solutions Marketing at CA Technologies
and is responsible for thought leadership and
sales enablement for Application Performance
Management as well as CA solutions that help
enterprises implement DevOps. In previous

roles at Compuware and Adobe, Kieran’s responsibilities included corporate
awareness, product marketing, field enablement, and partner marketing.

 For over a decade, Kieran was Senior Director Global Marketing at Akamai with
oversight of the go to market strategy, channel marketing, and demand genera-
tion for Akamai’s entire solutions portfolio. While at Akamai, Kieran launched
several CDN market innovations, including J2EE-based EdgeComputing and
the open-standard Edge Side Includes (ESI), a markup language for dynamic
content assembly and delivery at the edge, which is used today by many lead-
ing enterprises.

 Kieran led product marketing and management roles at DataPower Technology
(now IBM), Nortel Networks specializing in XML/XSLT, VPN, and remote
access technologies. Kieran has also worked as a broadband consultant to
major service providers while at TeleChoice Inc. and was Wide Area Networks
editor for publications at McGraw Hill.

 Peter Waterhouse is Senior Director, DevOps
solutions at CA Technologies. With more years in
tech than he cares to mention, Peter’s experience
is broad and varied—ranging from implementing
“big iron” monolithic ERP software applications,
to writing crude Python code on his Raspberry Pi
to automate his son’s Lego creations.

 At CA, Peter is honored to be part of a fantas-
tic team of marketing professionals and solution
strategists; folks who each and every day work
tirelessly to ensure their customers get the most
value from their technology investments.

 Passionate about how disruptive technologies and DevOps in particular can
transform business and society for the better, Peter writes and blogs on a
variety of topics, including organizational culture, transformational business
models, lean thinking, and metrics. His articles and whitepapers address the

About the Authors xiii

purposeful application of DevOps, Cloud computing, Mobile, and the Internet
of Things; appearing in publications ranging from CIO Review Magazine and
 InformationWeek to App Developer magazine and Network World .

 Living in Melbourne, Australia, but raised in the north of England explains
why Peter supports Manchester City, and much to the annoyance of his loving
family, still listens to Joy Division and The Stone Roses.

 Peter has a Bachelor’s degree in Commerce and Economics.

 Acknowledgments
 In the spirit of true DevOps collaboration and sharing, we would like to
acknowledge the contributions of the following CA Technologies product
marketing colleagues.

 Alan Baptista; Scott Edwards; Amy Feldman; Matt Hines; Jeffrey Hughes;
Tim Mueting; Tyson Whitten; Brendan Hayes

 Their insights, thought leadership, and expertise have been invaluable in the
development of this book.

 P A R T

I

 DevOps: Conflict
to Collaboration

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_1

 DevOps in the
Ascendency

 “Be ahead of the times through endless creativity, inquisitiveness, and
pursuit of improvement.”

 —The Toyota Precepts 1

 Accelerating Agile Practices in Today’s
Software Factory
 In 2016, Formula 1 (FI) racecars, the ultimate in four-wheeled technology, are
awash in wireless sensors and transmitters.

 Running your eyes across the graceful, sculpted bodywork of these 200+ mph
engineering wonders, the only discernible interruption of their low-slung car-
bon fiber noses are small clusters of wireless antennas jutting up directly into
the drivers’ sightlines.

 C H A P T E R

1

 1 “Toyota Quotes,” The New York Times, Feb. 10, 2008: http://www.nytimes.com/
2008/02/10/business/worldbusiness/10iht-10facts.9900222.html?_r=0

http://www.nytimes.com/2008/02/10/business/worldbusiness/10iht-10facts.9900222.html?_r=0
http://www.nytimes.com/2008/02/10/business/worldbusiness/10iht-10facts.9900222.html?_r=0

Chapter 1 | DevOps in the Ascendency4

 As subtle as these transmitters may be, why would designers, who spend end-
less time and resources attempting to improve the aerodynamics and drivabil-
ity of the machines, accept such a stark concession? The answer is simple—to
arm their teams with priceless real-time data used to continuously improve
performance.

 Along the pit row wall, in the trackside garages, and back in the very design
centers where F1 engineers continue to refine their handiwork, telemetric
information provided by those tiny antennae is immediately translated into
change.

 While team principals and technical directors sitting directly adjacent to the
track communicate directly with the drivers, advising them how to adjust set-
tings on the fly, their colleagues in the garages prepare to adjust everything
from tires to aerodynamics when the machines pull into the pits.

 Meanwhile, back at the factory, live data is consumed by all manner of engineer-
ing teams who continually produce and modify new components to be utilized
in subsequent competitions—beginning the process of further advancement
even before the current race is complete. The push for innovation in F1 is a
perpetual activity; in this sense, perhaps more so than in any other sport, the
only constant is technological change.

 That Toyota Motor Corp., the global automotive giant best known for advanc-
ing such data-driven, process-centric “just in time” manufacturing practices—
concepts that revolutionized mass production of passenger cars—had such
a short-lived and disappointing record in F1 can only be classified as ironic.
However, the Kanban and Kata methodologies leveraged by Toyota since its
inception, paralleled on a smaller, more specialized scale by today’s F1 teams,
stand as the most widely emulated management frameworks in history.

 With an emphasis on the adoption and evolution of processes designed to
optimize resources while increasing production speed and quality—and most
importantly promoting constant innovation—the “Toyota Way” 2 represents
arguably the leading model for continuous improvement.

 In the words of W. Edwards Deming—the legendary American engineer and
management consultant who helped spearhead the reinvention of Japanese
industry after WW2—Toyota’s approach embodies the notion that, “It is not
enough to do your best; you must know what to do, and then do your best.” 3

 Grounded in constant observation and measurement of efficiency—from sup-
ply chain management through final production, with the goal of constantly
improving output, including and in particular worker productivity—this meth-

 2 Toyota Motor Corporation Annual Report, 2003, page 19.
 3 “Made in Japan,” MadeinWyoming.com , Rena Delbridge, copyright 1995: http://
madeinwyoming.net/profiles/deming.php

http://madeinwyoming.net/profiles/deming.php
http://madeinwyoming.net/profiles/deming.php

DevOps for Digital Leaders 5

odology flies in the face of traditional “waterfall” workflows. American auto-
maker Henry Ford may be credited with revolutionizing the assembly line, but
Toyota is widely recognized for decoupling and perfecting it.

 Rather than creating linear dependencies, where each successive activity is
wholly dependent on completion of the task preceding it, this revolutionary
approach emphasizes techniques wherein production is dynamically adapted
on the fly to result in optimal efficiency and maximum quality.

 Further illustrating the staunch devotion to continuous improvement repre-
sented both in the Toyota Way and in his personal doctrine, Deming famously
said, “It is not necessary to change. Survival is not mandatory.” 4

 This observation is neither subtle, nor, given industrial history, seemingly
misplaced.

 Embracing DevOps in the Application Economy
 In today’s rapidly evolving Application Economy, it is widely recognized that,
driven by the evolution of digital channels—across both the business-to-busi-
ness and consumer segments—many organizations are reinventing or recast-
ing themselves as providers of software and digital services.

 For example, the global population of mobile banking users is forecast to
double to 1.8 billion by 2020, representing over 25 percent of the world’s
population, according to KPMG. 5 As a result, banks are increasingly focused
on advancement of web-based and mobile applications, versus expansion of
brick-and-mortar operations.

 Furthermore, as business delivery mechanisms shift to the digital landscape,
end users’ tolerance of latency of such applications has grown increasingly
narrow. According to a study published by Wired in June 2014, roughly 50
percent of consumers expect a web page to load in two seconds or less—or
they move to abandon it. 6

 Given this transformation, as traditional business services are replaced by
largely web-based and mobile-friendly applications, organizations are being
forced to completely reexamine their software development and IT manage-
ment practices. Technology is no longer viewed as a supporting dependency,
but rather as a primary element of conducting business.

 4 Edward Deming, Out of the Crisis, (Cambridge, MA, MIT Press, 1982), p. 227.
 5 “Global Mobile Banking Report,” KPMG LLP, copyright 2015: http://www.kpmg.com/
channelislands/en/IssuesAndInsights/ArticlesPublications/Documents/
Digital%20offerings%20in%20mobile%20banking%20-%20May%202015.pdf
 6 “Great Expectations: 47% of Consumers Want a Web Page to Load in Two Seconds
or Less,” by Nilesh Patel, Wired , copyright 2014: http://insights.wired.com/
profiles/blogs/47-of-consumers-expect-a-web-page-to-load-in-2-seconds-
or-less#ixzz40vkvFwVl

http://www.kpmg.com/channelislands/en/IssuesAndInsights/ArticlesPublications/Documents/Digital offerings in mobile banking - May 2015.pdf
http://www.kpmg.com/channelislands/en/IssuesAndInsights/ArticlesPublications/Documents/Digital offerings in mobile banking - May 2015.pdf
http://www.kpmg.com/channelislands/en/IssuesAndInsights/ArticlesPublications/Documents/Digital offerings in mobile banking - May 2015.pdf
http://insights.wired.com/profiles/blogs/47-of-consumers-expect-a-web-page-to-load-in-2-seconds-or-less#ixzz40vkvFwVl
http://insights.wired.com/profiles/blogs/47-of-consumers-expect-a-web-page-to-load-in-2-seconds-or-less#ixzz40vkvFwVl
http://insights.wired.com/profiles/blogs/47-of-consumers-expect-a-web-page-to-load-in-2-seconds-or-less#ixzz40vkvFwVl

Chapter 1 | DevOps in the Ascendency6

 Within that context, most of today’s organizations are moving aggressively to
adopt more agile, efficient software delivery and IT management practices to
meet customers’ evolving expectations. Among the fastest growing and most
widely adopted strategies, aimed at bringing Toyota-like efficiency to the world
of the applications lifecycle, is the methodology known as DevOps .

 Whether or not Patrick Debois understood that he was creating, or at the
very least putting a name to, the movement that would completely rede-
fine the manner in which organizations build and support software is unclear.
What is known is that since Debois, a systems administrator, and a handful
of like-minded software development and IT operations experts first coined
the DevOps moniker in 2009, the concept has become a global phenomenon.

 The underlying concepts encompassed by DevOps are, at first glance, straight-
forward, but represent seismic reformulation within the context of software
production and support. Rather than maintaining discreet applications engi-
neering (“Dev”) and IT management (“Ops”) competencies and organiza-
tions, DevOps dictates use of smaller teams with cross-functional expertise
to improve software functionality and the processes used to deliver it.

 As highlighted in the seminal DevOps novel, The Phoenix Project , this mindset
eliminates the fragmented approach to applications delivery that has tradi-
tionally crippled many organizations in addressing the digital market opportu-
nity. Rather than asking developers to build an application and then charging
IT management with ongoing support, creating highly disparate and inefficient
dynamics, DevOps brings those specialists together so that engineering is
completed with a constant eye toward ongoing management.

 Just as critical in boosting organizational efficiency and software quality,
DevOps methodology—like the Toyota Way—also promises to increase the
ability to change the existing code base and deliver new capabilities to end
users, while cultivating internal experimentation. Leveraging automation to do
so is another hallmark of the Japanese carmaker’s model and is also core to
the DevOps approach.

 In a May 2014 editorial published in the Wall Street Journal, noted technology
evangelist and The Phoenix Project co-author Gene Kim echoed the words of
Deming in framing his view of ongoing DevOps adoption. Titled “Enterprise
DevOps Adoption Isn’t Mandatory — but Neither Is Survival,” Kim, also an
established entrepreneur, posits that “the business value created by DevOps
will be even larger than was created by the manufacturing revolution.” 7

 7 “Enterprise DevOps Adoption Isn’t Mandatory — but Neither Is Survival,” by Gene Kim,
copyright WSJ, 2014: http://blogs.wsj.com/cio/2014/05/22/enterprise-devops-
adoption-isnt-mandatory-but-neither-is-survival/

http://blogs.wsj.com/cio/2014/05/22/enterprise-devops-adoption-isnt-mandatory-but-neither-is-survival/
http://blogs.wsj.com/cio/2014/05/22/enterprise-devops-adoption-isnt-mandatory-but-neither-is-survival/

DevOps for Digital Leaders 7

 Responding to some experts’ observations that DevOps is only relevant for
lean-minded, applications-driven startups such as consumer transportation
darling Uber, Kim asserts that even the oldest, most entrenched businesses
must wrap their arms around the movement to compete and survive. The
author contends in the WSJ piece that this is, “because IT is the factory floor
of this century, and not just for manufacturing companies. IT is increasingly
how all businesses acquire customers and deliver value to them.”

 Like the so-called “lean manufacturing” wave that swept the business world in
the 1980s—directly related to the success of Toyota in growing to the point
of global sales domination—Kim asserts that today’s organizations must seek
to drive every element of inefficiency out of their software development life-
cycle (SDLC).

 Just as companies that failed to adopt leaner manufacturing processes in the
latter half of the 20th Century lost out to rivals that did, the expert, among
many others, maintains that organizations who overlook the need to adopt
DevOps in today’s Applications Economy will likely disappear.

 Evidence that Kim and other proponents are correct in predicting that orga-
nizations’ willingness to embrace DevOps will directly impact their ability to
compete is already mounting. Numerous research reports have reinforced
that leading DevOps practitioners already appreciate significant competitive
benefits.

 In a 2015 study published by Freeform Dynamics, in partnership with CA
Technologies, researchers found that the 20 percent of organizations that had
broadly adopted DevOps methodologies were 2.5 times more likely to have
charted improvements in customer retention.

 The report, “Assembling the DevOps Jigsaw,” 8 also found that these early
adopters were 2 times more likely to have realized improvements in cus-
tomer acquisition, and 3.4 times more likely to appreciate growth in mar-
ket share. Perhaps most notably, those organizations already well into their
DevOps transformations were 2 times more likely to have recorded a posi-
tive impact on revenue, and 2.4 times more likely to have experienced higher
profit growth.

 Regardless of the given era and environment, those financial results would
seem to speak for themselves. Yet, according to the Freeform Dynamics sur-
vey, 80 percent of all organizations have yet to embrace DevOps completely.

 8 “Assembling the DevOps Jigsaw,” Freeform Dynamics, copyright 2015: http://rewrite.
ca.com/us/articles/devops/assembling-the-devops-jigsaw.html

http://rewrite.ca.com/us/articles/devops/assembling-the-devops-jigsaw.html
http://rewrite.ca.com/us/articles/devops/assembling-the-devops-jigsaw.html

Chapter 1 | DevOps in the Ascendency8

 DevOps as a Critical Requirement
 The reality is, whether organizations are ready or not, the requirement to aggres-
sively adopt DevOps methodology has quickly become the new normal in the
Applications Economy. At the very least, the notion that such change is inevitable
in cultivating continued business growth must be recognized as an inconvenient,
yet irrefutable truth.

 In an increasingly fast-paced, complex, and ambiguous business world, compet-
ing on a landscape dominated by the continued evolution of digital channels
and mobile devices, the only tractable strategy is to adapt to survive. Driven by
the exponential speed of change, organizations must wrap their arms around
DevOps if they hope to defend and expand their market opportunities.

 Within this current atmosphere—defined by volatility, uncertainty, complex-
ity, and ambiguity (VUCA)—DevOps offers an unprecedented opportunity
for organizations to transform their SDLC to increase efficiency and meet
end users’ changing expectations. By fundamentally recasting the manner in
which they approach every element of software development and manage-
ment, DevOps represents the broader future of business in general.

 Despite the tendency to celebrate industry “unicorns” such as Uber—start-
ups whose technology and business models immediately lent themselves
to DevOps adoption—research such as the Freeform Dynamics “Jigsaw”
report illustrates that organizations of all sizes and industries must change,
or risk potential obsolescence. This conclusion is already being proven out
by widespread assimilation of the involved methodologies by everyone from
lean startups and centuries-old manufacturers, to nonprofits and government
agencies.

 Banking on DevOps Practices
 Adoption among stalwart names in the banking industry—recognized as one
of the most entrenched and “old school” segments in the entire business
world—offers further proof of this pervasive need for DevOps transformation.

 While notoriously staid in some senses, banks have also long-embraced signifi-
cant levels of software and IT to diversify their services and increase profit-
ability. Examples include inventions such as automated teller machines (ATMs)
and the vast electronic transaction processing systems that allow these com-
panies and their clients to move capital around the world in real time.

 With roots dating back over 150+ years into the Dutch banking trade,
global corporation ING is one such old world company that has success-
fully embraced DevOps transformation. Driven by existing inefficiencies in

DevOps for Digital Leaders 9

its 15,000-strong IT workforce and the need to address changing customer
demands to increase its (EU) 15 billion annual revenues, the Amsterdam-based
company embarked on an aggressive DevOps strategy beginning in 2011. 9

 Aimed specifically at enabling so-called “continuous delivery” of its applica-
tions to suit emerging customer preferences around online and mobile bank-
ing, company officials sought to remodel SDLC methodologies by invoking a
manifesto of legendary Apple co-founder Steve Jobs. Citing a 1989 interview
with Inc. Magazine in which Jobs famously said, “You can't just ask customers
what they want and then try to give that to them. By the time you get it built,
they'll want something new,” 10 ING set about on its DevOps initiative.

 With the expressed goal of retrenching its SDLC to eliminate onerous,
time-consuming waterfall practices and accelerate the pace of applica-
tions innovation, ING first moved to create more agile “scrum” teams that
brought together development and operations expertise. From a process
standpoint, one of ING’s tactical goals was to begin testing new applica-
tions code in a far more “production-like” environment, such that emerging
issues could be identified and resolved faster, accelerating code delivery to
end users, while improving quality.

 In support of those initiatives, the banking giant also leveraged significant
automation to address SDLC requirements, including configuration manage-
ment and software deployment. By bridging the gap between dev and ops, and
employing new levels of automation, the company was able to increase the
pace of its applications releases from an average of once every 13 weeks to
weekly updates.

 In support of this larger continuous delivery effort, ING was also able to
increase its pace of underlying mobile applications code deployments from
several hundred per month to over 80,000 per month, in less than two years.
By leveraging DevOps workflows and supporting automation, the Dutch bank
transitioned from release cycles dictated by technical roadmaps, to those
focused on strategic business objectives.

 Ultimately, customers expressed their approval both in adoption and via pub-
lic forums, as ING’s mobile application reviews on the Apple iTunes App Store
climbed from one star in 2011, to four stars in 2014.

 9 “ING Bank Case Study,” CA World’14 Presentation copyright CA Technologies. https://
www.youtube.com/watch?v=9jqY_bvI5vk
 10 “The Entrepreneur of the Decade,” by George Gendron and Bo Burlingham, copyright
 Inc. Magazine 1989: http://fortune.com/2009/11/23/decade-steve-jobs-apple/

https://www.youtube.com/watch?v=9jqY_bvI5vk
https://www.youtube.com/watch?v=9jqY_bvI5vk
http://fortune.com/2009/11/23/decade-steve-jobs-apple/

Chapter 1 | DevOps in the Ascendency10

 DevOps: A Key Component of Business Agility
 The ING story stands out not only as detailed proof of the manner in
which DevOps represents a tremendous opportunity SDLC reinvention, but
also as a specific example of how large, entrenched organizations can also
emulate the much admired startup mentality. At the end of the day, the
company’s continuous delivery exercise allowed it to appease the changing
preferences of mobile applications users, the ultimate goal of countless new
startup ventures.

 For years, everyone from management consultants to Wall Street inves-
tors have beleaguered the need for such pre-Internet companies to better
leverage the “lean and mean” traits of their upstart peers. With the dawn
of the DevOps era, driven by the Applications Economy, organizations,
regardless of scale and history, have in fact been presented with this spe-
cific opportunity.

 By completely transforming the manner, and more importantly the speed
with which new ideas can be translated into marketable products and ser-
vices—in the specific form of applications—organizations that have tra-
ditionally been slowed by their inherent size and complexity can rapidly
accelerate innovation.

 Conventional wisdom dictates that large enterprises with sundry customers
and products face greater risk in attempting to launch new services and sup-
porting business models. Meanwhile startups, unburdened with existing pro-
cesses and systems, can rapidly pivot from one guiding approach to another,
reinventing themselves whenever the need arises. Enterprises, typically guided
by the need to requite shareholder interests, have been prone to err more
toward stability, limiting their rapid growth potential.

 For example, it is widely recognized that this entrenched, risk-averse men-
tality has allowed startup companies such as eBay and Airbnb to displace
longstanding giants of the global retail and hospitality industries, respectively.
If you could turn back the clock 5-10 years and give Sears and Hilton another
chance to adopt the same strategies used by their startup rivals, obviously
they would jump at the opportunity.

 Part of this, in addition to a lack of shareholder reckoning, revolves around
the fact that startups have also been able to quickly embrace emerging busi-
ness technology trends, including cloud computing, mobile apps, open source,
crowdfunding, and other means of collaborative economics.

 Yet, if the core of this mentality, empowered by technological agility, is that
innovation is merely a “good idea made possible,” then adoption of DevOps
represents just such an opportunity for organizations, regardless of size, to
accelerate business via more efficient applications delivery.

DevOps for Digital Leaders 11

 As framed by Jez Humble, leading technology consultant, recognized as a
founding father of the DevOps movement: “The long-term value of an enter-
prise is not captured by the value of its products and intellectual property, but
rather by its ability to continuously increase the value it provides to custom-
ers—and to create new customers—through innovation.” 11

 At its core, the premium placed on the startup mentality, as previously refer-
enced, relates primarily to the notion of market disruption. This is perhaps
best exemplified, thus far, by those Applications Economy darlings that have
successfully introduced new business models supported by web and mobile
technologies.

 However, leveraging DevOps and its halo effect of increased innovation
through more efficient and rapid delivery of differentiated applications, one
could easily assert that in the matter of enterprise versus startup, the playing
field is being leveled quickly. Specifically, as organizations leverage DevOps to
become more agile in addressing the Applications Economy, they are able to
better keep pace with their smaller, more innately nimble rivals.

 Circling back to the origins of the Toyota Way, the involved tenets of disrup-
tion via technological innovation have always been recognized as catalyst in
transforming industry; in fact, even the genesis of this specific example has
roots predating the auto industry.

 In 1896, Sakichi Toyoda invented Japan’s first self-powered loom, incorporat-
ing numerous revolutionary features, most notably the ability to automatically
halt production when threads moving through the devices were broken. 12
Leveraging his invention, Toyoda built his startup into a leader in the Japanese
textiles industry.

 Those concepts, which became the legendary Toyota Way, were merely car-
ried over when his son Kiichiro launched the automaker Toyota Motors in
1937. As it would turn out, this technology-driven approach to innovation and
disruption would also dovetail perfectly with the lean management concepts
promoted by Deming as he helped resurrect Japanese manufacturing in the
1940s.

 At the time, automakers in other areas of the globe, notably the United States,
likely would have never accepted that such a company, far smaller than their
own booming operations and literally rising from the ashes of war, would have
the opportunity to dominate the worldwide market.

 11 Jez Humble, Lean Enterprise: How High Performance Organizations Innovate at Scale,
(Sebastopol, California, O'Reilly, 2015) p. 39.
 12 “Automation with a Human Touch,” Toyota Motor Corporation World site, copyright 2016:
 http://www.toyota-global.com/company/vision_philosophy/toyota_production_
system/jidoka.html

http://www.toyota-global.com/company/vision_philosophy/toyota_production_system/jidoka.html
http://www.toyota-global.com/company/vision_philosophy/toyota_production_system/jidoka.html

Chapter 1 | DevOps in the Ascendency12

 In 2012, after decades of displacing customers from other brands, Toyota was
recognized at the world’s largest automobile manufacturer, having produced
its 200-millionth vehicle and grown into the first automobile manufacturer
to ever produce more than 10 million vehicles per year. In 2016, amid larger
worldwide economic concerns and a headline-grabbing airbag recall issue, the
company remains among the global sales leaders in its industry.

 Companies such as Toyota and ING, along with endless agile startups, offer
tacit proof that for organizations seeking to increase market relevance and dis-
ruption, DevOps offers an attractive template. Yet, citing Freeform Dynamics’
findings that only 20 percent of all organizations have achieved any semblance
of DevOps maturity, the movement is clearly still in its nascence.

 To wit, the researchers found that even though 80 percent of respondents to
its survey view DevOps as a “key component of business agility,” only 55 per-
cent of organizations laid claim to having created a well-defined DevOps strat-
egy. Furthermore, while 86 percent of those organizations surveyed labeled
DevOps-oriented education of business stakeholders and greater alignment
of IT and business priorities as important, only 33 percent and 37 percent, had
enacted those programs, respectively.

 Loosely stated, the concept of disruption, in general, suggests that market
incumbents typically become less profitable and open to displacement from
more agile peers based on the entrenchment of inflexible business models.
It is widely acknowledged that there are two primary models for market
disruption in the current era—“new market” disruption and “low end” dis-
ruption—at least as defined within the context of so-called “disruptive inno-
vation” theory. 13

 In the case of new market disruption, the landscape is forever altered when a
new products arrives that somehow better addresses a segment that incum-
bents have not yet envisioned or delivered. Whereas with low end disruption,
incumbents see business chipped away by products that aim to encompass a
smaller subset of perceived value drivers offered at a lower price point.

 Looking closer at the promise and outfalls of DevOps—and the ability of
adopters to better align themselves with the exploding demand for software
and applications—one could easily argue that this ongoing technological rev-
olution directly supports both archetypes of the disruptive opportunity. It
would seem obvious that those organizations that have yet to jump in sit
greatly imperiled by its continued advancement.

 Some may view the Darwinian views of Deming, or Gene Kim, as overstated,
particularly as related to DevOps and the Applications Economy. One could
imagine that organizations that do not yet supply applications to consumers
or business partners would remove themselves from the larger conversation.

 13 “What is Disruptive Innovation?,” copyright Harvard Business Review, Dec. 2015.

DevOps for Digital Leaders 13

 However, in the following chapters of this book, there is a great deal of evi-
dence—backed by specific technical practices—that make it clear just how
sensible, if not necessary, it is for every organization to view the DevOps
opportunity as their best chance for success and survival.

 DevOps: A Practice for Champions
 At the conclusion of the 2015 F1 season, the world champion driver Lewis
Hamilton and teammate Nico Rosberg of the Mercedes AMG Petronas
Formula 1 Team, also winners of the highly coveted F1 constructor’s title,
returned to the outfit’s UK headquarters to thank the factory workers who
made their victories possible.

 While most of those people, numbering in the hundreds, never joined the
team at the track on a single race day during the globe-spanning nine month
season, the champions heaped praise on their colleagues, recognizing the year-
round effort that supports the entire operation.

 Mercedes made easy work of the rest of the F1 field in 2105, having won a
stunning 16 of the 19 total races. At the same time, this was not without
constant updates to its racecars, with new components constantly meeting
the team around the world as they progressed throughout the grueling race
calendar.

 “In racing there are always things you can learn, every single day. There is
always space for improvement, and I think that applies to everything in life,”
Hamilton has been quoted as saying. 14

 “With the team, whether it be my guys that are at each Grand Prix, the team
back at the factory who work day and night to develop the car, build the parts,
and send the parts, the IT team, and the crew cleaning the factory. Everyone.
We do it together. We all feel the joy when we are winning and the same pain
when we are losing,” the champion driver continued.

 Without the constant delivery of new innovations, without the continued
experimentation and refinement of the involved technologies, and of course
all the underlying processes, Hamilton affirms, the likelihood of his success
would be scant, if not impossible.

 DevOps offers the chance for any organization to run more like a champion-
ship team, ever improving performance, going faster, and winning.

 14 “Mercedes AMG Petronas Team End Season on Top,” By Donny Halliwell, Inside Blackberry ,
copyright 2015. http://crackberry.com/mercedes-amg-petronas-formula-one-team

http://crackberry.com/mercedes-amg-petronas-formula-one-team

Chapter 1 | DevOps in the Ascendency14

 Summary
 Only a few years into the Application Economy it’s clear that huge benefits
are being appreciated by those organizations capable of embracing emerg-
ing processes and technologies that enable agile methodologies. DevOps is
widely recognized as one of the most influential and important movements
that empower that transformation.

 At the same time, such a sea change in the manner that organizations approach
software development and operation, or any process for that manner, cannot
be realized without some growing pains. In the next chapter, we’ll take a look
at the historic state of disconnect that has existed between developers and IT
operations staff, and the approach that organizations embracing DevOps have
employed to reinvent the manner that such experts collaborate.

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_2

 IT Impasse
 Faster Software Development Versus Operational

Stability

 Ever since we flipped the switch on commercial computers back in the 1950s,
IT departments have been struggling to keep up with an insatiable demand
for software applications and services. Of course many technologies like
commercial of-the-shelf software packages, virtualization, and cloud comput-
ing have helped along the way, but generally IT delivery has been slow and
uncoordinated.

 In such an environment where IT generally supported internally-centric busi-
ness processes, separate teams overseeing discrete technology functions was
for many years considered the norm. But in today's rapidly evolving digital
world, these practices no longer work.

 A World of ‘Wicked’ Business Problems
 Keeping up with demand for changes to internal applications supporting
business processes is tame compared to the “wicked” problems facing IT
departments today. Like societal problems such as global warming and drug
abuse, they’re wicked because IT is placed in an unenviable position of trying

 C H A P T E R

2

Chapter 2 | IT Impasse16

to rapidly deliver solutions before problems are fully understood and where
business conditions constantly change. This is due to three transformational
forces:

• Products to services —Customers now care less about
physical things and more about the total experience. This
explains why companies wrap physical products in ser-
vices. Like Tesla, who routinely deliver enhancements to
the Model S car via software. Or Bosch, who now provides
tailored telematics and analytics as-a-services so that fleet
operators can optimize maintenance and cut fuel costs.

• Efficiency to agility —Established brands with decades of
reputation are constantly being disrupted. Kodak lasted
100 years, Blockbuster less than 20. Even technology stal-
warts like Microsoft have felt the ground shift beneath
them. Business reputations are forged from digital adept-
ness and the ability stay ahead of the market—or create
new ones.

• Separation to fusion —There is no longer separation
between physical products and software. Is your smart-
phone circuitry and plastic, or is it a Spotify music service
and digital payment system? Is your Nest home thermo-
stat an aesthetically pleasing appliance, or is it an analyti-
cal marvel of energy management?

 Operating within this environment, wicked problems now challenge the
essence of how business is conducted and how applications should be
designed, developed, and supported. Thanks to mobility and social comput-
ing, the producer-consumer relationship has been reversed, with businesses
placed in a position of having to respond to customer behaviors rather than
dictating them. This places many organizations on the back foot because of
traditional development practices.

 Internal business processes supported by large complex applications have
been the lifeblood of business. Supporting processes like logistics, inventory,
and financial management, these applications are periodically optimized to eke
out operational cost efficiencies. In this context, the focus on IT has been to
maintain a steady state; keeping the technical lights and only changing applica-
tions over longer cycles, sometimes only once or twice a year.

 Even when custom development occurs, the general practice has been to
invest heavily in application software to support large-scale projects. Here,
the pattern is to define all the requirements and features at the start and
progress the application toward production status by developing and testing
in a linear fashion. Finally, if many business stakeholders agree the system is
what’s wanted, the application is handed over the wall to production for IT
operations to maintain.

DevOps for Digital Leaders 17

 Considering these forces, this “Waterfall” style of development (see Figure 2-1)
now has a number of disadvantages. First, by establishing a fully defined set
of requirements up-front and then failing to accommodate shifting customer
behaviors, organizations risk delivering “white elephant” applications, which
are software systems that customers never use. Secondly, in the time taken
to release software, business conditions may have changed, meaning depart-
ments must change the system radically, or as is often the case, abandon it
completely. Finally, since application software and functionality is delivered
en masse, the support and maintenance burden on IT operations increases
suddenly and significantly.

Pr
ob

le
m

So
lu

tio
n

Time

User Requirements

Business Case
/ Funding

Testing / QA

Development

Implementation

Aiming to fully define requirements at
the start and excessive time delays
results in services that don’t meet
business needs and burden IT with
more cost.

Pr
ob

le
m

 Figure 2-1. Waterfall software development model

 The Emergence of Agile Development
 In Formula 1 racing, rules change every season. Cars now compete without
fuel pit-stops and on sets of tires that degrade more quickly. It’s the same in IT,
where software must now be delivered as a continuous stream of value that
constantly changes to support new business conditions.

 Trying to solve wicked business problems (e.g., transforming the businesses
operational model with a new mobile sales channel) with existing methodolo-
gies like Waterfall can be like trying to corral cats. Problem definitions and
requirements can change as new solutions are considered and implemented,
so much more flexibility is required across the software development lifecycle.
And, with many diverse opinions on what actually constitutes a business prob-
lem, there’ll be many stakeholders to engage and ideas to analyze.

Chapter 2 | IT Impasse18

 Agile development has emerged as the practice of choice to address these
challenges. Agile (see Figure 2-2), which involves iterative problem solving and
continuous feedback, is well suited to solving these complex business prob-
lems. Some common benefits include:

• Software updates are made in small regular batches,
allowing businesses to adapt quickly to new information

• Mistakes or false assumptions are detected much earlier
in the software lifecycle, where they are much less costly
to correct

• By detecting problems quickly and early, teams have much
faster feedback and organizational knowledge improves

• Teams can immediately apply learning and knowledge
gained to improve the quality of application software

• By working in parallel across development and testing,
agile teams can increase the velocity of application devel-
opment and delivery

 Agile methods help teams manage and run their own projects. Rather than
wait for approvals and sign-offs across multiple stages, agile supports the
notion that fully autonomous teams should be able to make their own archi-
tectural design decisions, even when it comes to tool usage and deciding
what's needed to push software code all the way into production.

User Requirements Planning

Development
“Sprints”

User Review

Retrospectives

Deployment

Iterations…Operational Feedback

 Figure 2-2. Agile software development model

DevOps for Digital Leaders 19

 But agile development is not without its drawbacks. While agile development
teams are focused on speed and agility, the traditional mantra of IT operations
is maintaining application stability, even if that means slowing things down. To
this end, IT operations often employ rigorous change control processes and
enforce infrastructure standardization dictates to maintain control. While well
suited to supporting legacy internal systems where updates were delivered in
large batches, these processes can be too rigid to support newer applications
designed to be always changing.

 Many of these issues are a direct consequence of how IT operations have
traditionally been run. Historically, IT operations have been delivered as a set
of shared services, supported by functional disciplines in areas such as data
center services, network management, and security. If business users or devel-
opment needed an enabling service (e.g., provisioning test labs), operations
had to be engaged for delivery.

 However, this model is changing, with new tools and methods that enable
business groups and development teams to bypass the IT operations shared
service completely. Many recent technology trends have supported these
practices, including:

• Polyglot programming languages/platforms —Autonomous
teams can select the programming language best suited
to their project. This may include older languages like
Java and C++, or new platforms and languages to support
specific development use-cases or design requirements
(e.g., Node.JS, Go, and Rust). In other cases development
teams are eschewing traditional relational databases in
favor of NoSQL or document style data stores. These
could be advantageous in projects where data require-
ments are indeterminate or evolving and where speed
and scalability is more critical than up-front logical
design and data integrity. Examples include MongoDB,
PostgreSQL, and Cassandra.

• Programmable Infrastructure —Also known as Infrastructure-
as-code, this allows teams to write code to manage
configurations and automate infrastructure provisioning.
Rather than using manual methods or scripting to build
development ready infrastructure, teams can write code in
languages with which they are familiar, together with famil-
iar practices such as version control and automated testing
to reduce errors. Unlike scripting, which is primarily used to
automate static steps, programmable infrastructure with its
descriptive languages allows developers to code processes
that are far more versatile and adaptive. Examples include
Chef, Puppet, and Ansible.

Chapter 2 | IT Impasse20

• Open source software —Beyond the more obvious “free
to use” benefits, many organizations are embracing open
source software (OSS) as a means to increase agility.
By adopting OSS, development teams can benefit from
community-based and collaborative development, with
tools that simplify and automate many tasks (e.g., version
control and software build management). By having the
eyes of the "community" on the software, bugs can be
quickly identified and resolved, with new improvements
constantly being developed and delivered.

• Cloud and platform-as-a-service (PaaS) —Not too long ago
testing a new application or update required develop-
ment managers to submit a business case for the pro-
curement of new hardware, wait weeks for delivery, then
go through a painstaking process of provisioning and con-
figuration. This has changed in recent years—first with
the advent of server virtualization and more recently
with PaaS providing complete cloud technology stacks
for development and testing.

• Containers —A recent technology innovation, containers
comprise an entire runtime environment, including the
application, plus all its dependencies, libraries, and con-
figuration files needed to run it—all bundled into one
package. By containerizing the application platform and
all dependencies, any differences in OS distributions and
underlying infrastructure are abstracted away. Unlike
virtual machines, containerized applications run a single
operating system, and each container shares the operat-
ing system kernel with the other containers. This makes
containers more lightweight and resource efficient than
virtual machines. Containers can be run on public cloud
services and are easily shared, which makes them particu-
larly useful for development and testing teams.

• Canary releases/dark launches —This is a release method
used to test the performance of software deployments
and new functionality in a phased manner. Canary releases
are an important aspect of agile development, since, by
rolling out new features incrementally and testing them
with real users, teams can gather feedback and implement
improvements quickly.

DevOps for Digital Leaders 21

• Design for failure —As businesses embrace public cloud
services, teams are employing design methods to make
applications completely independent of the availability of
underlying infrastructure. By building resilient systems in
which inevitable failures have a minimum impact on ser-
vice, design for failure allows teams to scale applications
quickly while achieving higher levels of uptime, even dur-
ing major cloud infrastructure outages.

 Agile Empowerment Challenges
 While many of the technologies and methods described above have empow-
ered teams to deliver software faster, this doesn’t guarantee success. While
developers are tasked with producing great software code, they often neglect
critical issues associated with application performance and supportability. In
many cases the adoption of new technologies and practices exacerbates this
problem due to some common failings:

 Technology for Technologies’ sake —It’s understandable that developers want to
use the latest tool, but this can lead to support problems. For example, opting
for a NoSQL database because it helps avoid lengthy schema design issues
may address short-term issues, but increases the support burden because IT
operations and support have no experience with the technology. Operational
cost structures can also be impacted, by way of increased training costs and
hiring specialists.

 ■ Tip Make new technology tool selection a collaborative exercise. Enterprise architects can

coach teams on the importance of placing program or business level objectives above discrete tool

requirement or personal preferences.

 Misuse of New Technology —It’s a fact of IT that new technologies often can
and will be abused, unwittingly or intentionally. With modern technologies,
lack of experience may entice people to use technologies in ways they were
never designed. For example, blindly dictating that every monolithic and legacy
application should be containerized whether they’re appropriate for the tech-
nology or not.

 ■ Tip Today’s new technology is tomorrow's legacy. Always assess whether the use of technology

is appropriate for the business and never underestimate architecture and design requirements.

Chapter 2 | IT Impasse22

 Metric Misalignment —With developers using techniques like canary releases,
dark launches, and split or A/B testing, businesses needs to know whether
new features are successful and have led to more customer conversions and
sales. Historically, however, IT operations have used technical diagnostics as
a means to assess performance, which may be misaligned with the business.

 ■ Tip Consider adopting monitoring methods that focus more on achieving desired business

outcomes. In a mobile app context, this could include monitoring techniques to analyze app and

functional usage by geographic area and user community. By managing to these outcomes, it

becomes easier to assess the implications of any application performance issues and feed richer

information and insights back to development.

 Lost Opportunities —As new development platforms become increasingly
abstracted from hardware infrastructure, many complex performance prob-
lems can surface. Because developers are shielded from the infrastructure,
they can be slow to respond to any issues their code has introduced. This lack
of insight also means they can fail to fully exploit the true potential of new
cloud-based technologies.

 ■ Tip In customer-centric computing, high-performance and low-latency are as important

as functionality and design. Consider teaming junior and experienced developers with skilled

IT operations and sysadmins to determine how modern hardware architectures can be better

exploited to consistently deliver a high-quality customer experience.

 Workarounds Due to Constraints —Even as teams look to adopt public cloud ser-
vices and PaaS to accelerate development, they’re still constrained by access to
production systems for testing. This can involve delayed access to applications,
infrastructure, and perhaps the most time-consuming and resource-intensive
task in IT—creating, maintaining, and provisioning accurate, compliant and up-
to-date production-like test data. With these constraints, teams may introduce
sub-optimal testing practices that fail to detect software defects or compro-
mise compliance with regulatory data protection requirements.

 ■ Tip Consider technologies that can simulate unavailable systems across the development

lifecycle. This allows developers, testers, and integration teams to work in parallel for faster

delivery. Capabilities in test data management, including data subsetting and masking, together

with synthetic on-demand test data generation, should also be assessed.

DevOps for Digital Leaders 23

 Modern Application Architectures
 To support the businesses need to innovate, development teams must contin-
uously deliver software services at an increased velocity. This has been recog-
nized by web-native companies such as Netflix and Amazon, who’ve changed
their software architectures to support the need for continuous innovation—
essentially using them to redefine the markets within which they operate.

 With agile methods, organizations can iterate quickly to support innovation,
but teams are also changing application architectures to improve software
flexibility and help accelerate deployment. For this reason, older style monolith
designs are being supplemented with microservice designs (see Figure 2-3).

User Interface

Business Logic

Data Access

Database

User Interface

Microservice

Database Database Database

Microservice Microservice

Monolith Architecture Microservice Architecture
Each element of functionality in a separate service….

Scales by distributing services, replicating as needed

All application functionality in a single process

Scales by distributing entire application

Cross-functional teams organized
around business capabilities

Silo'd functional
teams

 Figure 2-3. Monolthic and microservice application architectures

 Until recently, application architectures were monolithic in design and opera-
tion. Although consisting of many services, monolithic applications are pack-
aged and operate as a single unit. For IT teams now tasked with faster delivery
and deployment, the characteristics of monolithic design have presented a
number of operational challenges:

• Brittleness —If any single application element of compo-
nent fails, then the entire application fails. If a task such
as payment processing consumes more CPU or memory,
then the whole application can degrade.

• Risk —Because everything is packaged together (and fails
together), teams may be hesitant to change supporting
technology stacks and infrastructure. This can explain

Chapter 2 | IT Impasse24

operational resistance to increased deployment rates,
since even simple application updates to brittle mono-
lithic applications could cause system-level outages.

• Tightly coupled —Applications can only be scaled by
deploying the entire application on more servers. This can
be highly problematic in new mobile application develop-
ment scenarios when demand is difficult to predict.

• Dependencies —Since applications are tied together,
developers may have difficulty working independently to
develop, test, and deploy their own software components.
Development time increases and productivity suffers
because they’re often dependent on other teams finish-
ing work before they can start.

 Microservice designs differ from monoliths in that they involve building appli-
cations as a set of small, independent services. In essence, each microservice
focuses on a specific element of business functionality. For example, in a web
application there could be many microservices supporting everything from
login processing and shopping carts, recommendation services and payment
processing. Loosely couple in nature, microservices communicate with other
services via Application Programming Interfaces (APIs).

 Microservices can provide business a number of significant benefits:

• Independent deployment —Scaling becomes less problem-
atic. For example, in a web-based shopping application a
team can quickly deploy the instances of service it needs
to meet demand spikes, while scaling back others.

• Independent coding —Teams have more freedom to
develop in different programming languages, each opti-
mized for different processing tasks. Microservices can
free organizations from being locked into a single tech-
nology stack.

• Fault tolerance —When a microservice fails, it’s unlikely
that the entire system will fail. If the recommendation
service fails in a web application, shopping cart and pay-
ment processing services can continue to function.

• Increased agility— Microservices designs can better sup-
port continuous delivery. Since systems are built and
deployed independently, they can potentially be tested
and delivered faster.

DevOps for Digital Leaders 25

 Microservices: Small Isn’t Always Beautiful
 While the simple and elegant nature of microservice style design delivers
many benefits, substantial complexity exists in terms of management and
operations. If ignored, these issues could increase friction between develop-
ment and operations teams. Important considerations include:

• Supportability —The support burden can increase substan-
tially—especially when IT operations are suddenly faced
with managing hundreds of microservices developed in
different languages, accessing new data stores, and run-
ning on cloud platforms and infrastructure.

• Monitoring —Managing a single monolithic application is
demanding, but now IT operations has to ensure many
more processes remain performant. With highly distrib-
uted microservices systems, a whole new set of man-
agement considerations surface. These include network
latency, fault tolerance, asynchronous messaging issues,
and network reliability.

• Coordination —Deploying hundreds of microservices
demands rigorous deployment processes that can be
beyond the capabilities of teams using manual processes
and scripting.

 ■ Note Modern management approaches to address microservice deployment and monitoring

challenges are discussed further in Chapters 6 and 7 .

 Ending the Technical Impasse
 Even with advances in tooling, development methods and software designs,
the friction created by teams operating in discrete functional silos can negate
all potential benefits. Fractured processes across the application software
lifecycle inevitably result in slow delivery, low productivity, and defect-ridden
software systems. This has to change.

 IT’s value proposition isn’t just to keep the technology lights on and periodi-
cally deliver improvements over long cycles; it's to continuously manufacture
business value from a modern high-performance software factory.

 DevOps, with its focus on close collaboration between development and
other IT groups, while automating essential application delivery processes, is
now a critical business imperative.

http://dx.doi.org/10.1007/978-1-4842-1842-6_6
http://dx.doi.org/10.1007/978-1-4842-1842-6_7

Chapter 2 | IT Impasse26

 Summary
 The following chapters outline key strategies that can help IT and digital lead-
ers accelerate a successful and business-aligned DevOps initiative.

 Starting with Chapter 3 , we’ll describe how to build a winning DevOps culture
and re-energize the IT organization. Here, we'll examine easy and cost-effec-
tive ways to increase collaboration, the application of Lean thinking to reduce
IT waste, and what constitutes a comprehensive DevOps metrics program.

http://dx.doi.org/10.1007/978-1-4842-1842-6_3

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_3

 DevOps
Foundations
 Culture, Lean Thinking, Metrics

 Blink during a Formula 1 pit-stop and you’ll probably miss it. But this wasn’t always
the case. Fifty years ago, a pit-crew would take over a minute to change the wheels
and refuel. Today, anything more than three seconds is considered a fail.

 It’s the same in software development, where teams once tasked with updat-
ing enterprise applications at a sedate pace must now deliver new software
services as a continuous flow of value to customers.

 The problem for today’s enterprise, however, is that software teams don’t
work like Formula 1 pit-crews. Rather than working in tandem, IT teams often
work serially—development codes, then QA tests, and finally IT operations
monitors. However, with application software released, enhanced, and retired
over more compressed timeframes (months and even days), this stop-start
method of development falls short. It’s as ineffective as each member of a
Formula 1 pit-crew replacing a tire and checking wheel nut tension before
the next one could start—the race would be over before the car left the pits.

 While we can celebrate the heroics and skill of great racing car drivers, what sets
successful constructors apart is their ability to build a winning culture irrespec-
tive of role and responsibility, be that driver, team manager, telemetry engineer, or
aerodynamics chief, everyone is focused on a singular goal—winning races. It’s why
drivers thank the teams before they spray champagne on the podium.

 C H A P T E R

3

Chapter 3 | DevOps Foundations28

 Like Formula 1 drivers, technological advancements have improved the effi-
ciency and effectiveness of IT professionals. However, in organizations that
traditionally measure and incentivize based on technical specialization within
functional areas, relying on tools alone will never build the collaborative cul-
ture needed for business growth and profitability.

 What Characterizes DevOps Culture?
 DevOps is very different from traditional thinking because it places great
emphasis on culture. It instills a shared sense of vision across multiple teams,
directly aligned to the business and its customers. To this end, maverick
behavior, such a cutting corners and allowing defect ridden code to go into
production, or blaming operations when a software release fails, is counter to
a DevOps thinking. With DevOps unified IT is the hero and no one is singu-
larly to blame for problems.

 But this is challenging in IT because of the friction existing between develop-
ment and other IT teams—especially IT operations. On the one hand, devel-
opers are focused on accelerating change by faster delivery of applications,
while the operational mantra has been resilience and stability at all costs, even
if that means holding back change.

 Evidence suggests, however, that while both these goals are equally important,
they are not mutually exclusive. For example, the 2016 Puppet Labs “State of
DevOps” report illustrated that high-performing IT organizations are well
able to achieve faster software delivery along with increased resilience and
stability. 1 Clearly, DevOps high performers have ended the divisional “turf
wars” by enacting strategies to re-shape entrenched silo thinking and behav-
iors into a more powerful collective force.

 Since DevOps culture involves creating new shared values and behaviors
across IT teams, leadership must play an active role in driving these character-
istics across the entire organization.

 Focusing on Products over Politics
 Traditionally, IT teams have been organized in technical silos. Interaction and
communication has been conducted through overly engineered and rigid
processes. Software changes run the gauntlet of lengthy change-management
processes, human intervention, and change review boards. Though not wrong
per se, these elements were designed to cater to situations where change
was less frequent but occurred in greater volumes, requiring more rigor to
ensure operational stability and compliance.

 1 https://puppet.com/blog/2016-state-of-devops-survey-here

https://puppet.com/blog/2016-state-of-devops-survey-here

DevOps for Digital Leaders 29

 A strong DevOps culture, however, is characterized by systems thinking. That
is, a collective emphasis on service as a whole, not on discreet functional
elements or processes. Rather than persist with technical fiefdoms, DevOps
aims to break down barriers—organizing by product over structure and con-
tinuously driving improvements in context of a products lifecycle, from the
inception of an idea to full production status. Strong leaders recognize this by
promoting open communication, using shared metrics, and establishing (even
automating) feedback mechanisms within and across teams.

 Building Trust and Respect
 Over many years, respect has been garnered by individual contributors. Be
that superhuman developers who crank out code, or on-call operations staff
who fix problems at 4:00am. In a thriving DevOps culture, hero worship-
ping takes a back seat to collective respect. With DevOps, everyone should
respect the contributions of others and no one should be afraid of speaking
up for fear of abuse and vilification.

 This is critical, because from healthcare to aerospace, studies have shown that
bad practices and behaviors can over time become accepted as normal prac-
tices—often with disastrous consequences (see Chapter 8 for further discus-
sion on strategies to combat normalized bad practices). In IT this happens all
the time due to power games and lack of respect. Even if new staff witness
blatantly suboptimal practices, they’ll be loath to report it for fear of rebuke
and retribution by managers, eventually accepting the situation and practicing
it themselves. DevOps leaders should be mindful of this and work across the
product lifecycle to identify situations where violations are tolerated because
people are afraid to speak up or look mean.

 Trust also plays an important role in DevOps culture. Just as the Formula 1
driver trusts his pit-crew to fit four wheels securely, so must cross-functional
trust be established across IT. For development, this means trusting that the
production performance information from operations can actually help in
software refactoring and reducing technical debt. For operations, it means
trusting new application design patterns will help the business scale. Everyone
from security to enterprise architecture is part of the trust equation, and as
the speed of software delivery accelerates, no DevOps program will be suc-
cessful without it.

 Increase Empathy Everywhere
 It’s well understood how important the role of empathy plays in today’s app-
centric software design. Without understanding the emotional and physical
needs of customers, together with their behavioral patterns, businesses risk
substantial losses from their software investments. This explains why many

http://dx.doi.org/10.1007/978-1-4842-1842-6_8

Chapter 3 | DevOps Foundations30

organizations conduct rigorous design experiments before any full software
release. This is illustrated in the extreme by Google’s “50 Shades of Blue” user
interface testing exercise. 2

 Yet despite this, empathy is lacking within many enterprise IT departments.
Teams usually operate in separate locations, so development and operations
teams have few face-to-face opportunities necessary to share each other’s
pains, surface concerns, or raise issues.

 There are many simple but effective strategies leaders can use to build empa-
thy. Not the least this should include building closer ties between develop-
ment and support. Even with the greatest software and delivery processes it’s
important to understand their perspective and what they experience when
dealing with customers.

 ■ Tip When developing products or new features, put yourself in the position of the customer

and support staff by examining all the situations where they might need help.

 Staff (including developers) should understand the importance of enabling
a great customer experience. To that end, consider working directly with
customers directly in the field in a variety of adverse situations. What hap-
pens when as a customer you’re trying to board an airplane and the scanner
breaks? Or what’s the impact when a mobile app crashes or bad network
coverage means you can’t call road side assistance?

 Obviously it’s not always practical or feasible for developers to work this closely
with clients; however, with analytics tools, staff can put themselves in the “shoes”
of the customers and gain realistic insights into the customer experience.

 Open Communication Channels
 In 1968 a computer programmer, Melvin Conway, postulated that organizations
that design systems are constrained to produce designs which are copies of
the communication structures of these organizations. 3 In a DevOps context,
what’s now dubbed Conway’s Law has great relevance, especially in situations
where organizational structures and closed communication channels prevent
developers and operations from agreeing on IT performance objectives (e.g.,
increased change frequency and improved reliability). In such cases, it’s pos-
sible for team-based activities to be prioritized over more important cross-
functional improvement strategies.

 2 https://www.theguardian.com/technology/2014/feb/05/why-google-
engineers-designers
 3 Melvin E. Conway, "How do Committees Invent?," Datamation 14 (5) (April 1968): 28–31.

https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
http://www.melconway.com/Home/Committees_Paper.html
https://en.wikipedia.org/wiki/Datamation#Datamation

DevOps for Digital Leaders 31

 There are many possible solutions to this problem. The technology teams
at Netflix and Amazon structure themselves around small teams, with each
one responsible for a small part of an overall system. Spotify promotes col-
laboration across team boundaries via agile development squads, chapters,
and guilds, with a separate IT operations team providing all teams the support
needed to release software themselves.

 Looking beyond technology-centric companies, there are other examples of
businesses thriving because they’ve modified communication structures. Take
Zara for example.

 Year after year in the fickle world of retail fashion and apparel, Zara continues
to increase revenue and profit. For Zara, flexible responsiveness to customer
demand, backed by a tightly integrated supply chain, is fueled by teamwork
and collaboration. In retail stores, managers use real-time intelligence to
place orders and feedback information directly to the point of manufacture.
Different teams (including design, product management, and merchandising)
use shared spaces and work closely together. With increased emphasis on
communication from initial garment design to distribution to the shop floor,
Zara has shortened product lead times and doesn’t unnecessarily commit
large volumes of product in advance of a fashion season.

 Considering approaches like these, cross-functional IT collaboration could be
improved when:

• Leaders apportion budget to practical co-location strate-
gies. This should be more than simple staff re-housing
and include shared work spaces and lounges, together
with team huddle areas and common wall whiteboards.

• IT operations team members regularly participate in agile
standup meetings in order to appreciate the value of
deploying code quickly and how their current activities
help or hinder release processes.

• Development teams attend operational post-mortems
or workshops to gain better insights into the problems
caused by poorly performing or insecure software.

• IT operations works with developers to establish perfor-
mance monitoring in pre-production so as to detect prob-
lems earlier where they are easier and less costly to fix.

• Developers are placed on the after-hours support roster
to better appreciate the impact of problematic software
code on users and customers.

• Support specialists share critical application experience
analytics obtained during mobile app engagements with
customers.

Chapter 3 | DevOps Foundations32

 Additional Factors
 Changing IT culture isn’t easy. Right or wrong, people have pre-conceived
notions and firmly entrenched ideas. Any sudden shift in workplace practices
and it’s only natural that people will feel threatened and push back. Addressing
this means patiently working with people to enact the necessary behavioral
change or move people to different jobs.

 With DevOps and cultural change, it’s critical to start with a clean state.
Rather than dive head first into massive IT workforce transformation pro-
grams, leaders should first assess the cultural landscape from a business per-
spective. This involves understanding the primary goal of the business and
then analyzing whether prevailing behaviors support it. Although seemingly
obvious, many organizations miss or neglect this critical step. If, for example,
a company defines its goals too broadly, people working in different IT teams
will interpret them in different ways and shape activities accordingly, often to
the detriment of each other and the business.

 In a broader sense, culture will also be influenced by an organizations’ business
model and operational perspective. There are three classes to consider:

 Run the business —In this model the overarching strat-
egy of the business is on continuing operations in much
the same way—only better, faster, and cheaper. Here the
focus for IT is operational excellence—adopting new
technologies, yes, but using them to pound out efficien-
cies across processes like warehousing and logistics.

 For these organizations, IT culture is characterized by
discipline and rigidity—all fine to support efficiency
improvements, but inadequate in a world where old
business rules are constantly being challenged by dis-
ruptive technology.

 Grow the business —The business strategy shifts from
doing more of the same to conducting the same busi-
ness in radically different ways. Netflix presents a good
example of this model. Five years ago, Netflix delivered
DVDs through the mail, now they stream entertain-
ment over the web—even creating their own content.
Customers still turn to Netflix for entertainment, but
the way in which Netflix is addressing that need has
fundamentally changed.

 For organizations in this category, the culture also
needs to change. For Netflix, their DVD-delivery model
required strong operational oversight over processes
like inventory management and distribution to drive

DevOps for Digital Leaders 33

efficiencies and increase customer satisfaction. Now
however, their streaming model and content genera-
tion programs requires teams rapidly delivering new
services based on quickly analyzing customer prefer-
ences and optimizing web performance and through-
put. Obviously if a company’s cultural behaviors and
values are still skewed toward driving efficiency in one
operational area, pivoting to the new model will be
difficult.

 Transform the business —This model carries the most
promise and risk because it involves changing the very
fabric of a company. Businesses don’t just conduct
the same types of business in new ways, they rein-
vent themselves completely. For Amazon that’s meant
moving to being a mega cloud computing provider
from selling books. For Walgreens, it’s meant going
from selling medicine over the counter to treating ill-
nesses in stores.

 With strategic transformation examples like these,
the business is introduced to new dynamics and com-
petitors. Now, IT performance will not only be judged
on growing the business of today, but also on creating
the core business in the future. To this end, a DevOps
culture built on open communication and collabora-
tion, trust, respect, and empathy isn’t just important
for short-term growth, it’s essential for long-term
business sustainability.

 Once business models and goals are clearly understood and communicated,
any required IT behaviors and values needed to support them can be influ-
enced through the development of fully aligned IT goals and metrics. These
could include shortening lead times for new products to support faster time-
to-market, increasing mobile app customer conversions to support increased
revenue objectives, or helping the current business scale by making better use
of cloud infrastructure.

 Lean Thinking to Reduce Waste
 Fuel strategies play a significant role in Formula 1 racing. A car with a half-full
tank can be as much as three seconds faster than a rival vehicle with a fully
loaded fuel cell. Extra fuel equals extra weight, so teams go to great lengths to
calculate the exact amount of fuel needed under full race conditions.

Chapter 3 | DevOps Foundations34

 Though beautifully engineered and continuously refined, racing car engines
are still flagrantly wasteful. Like your car at home, the dynamics of internal
combustion still mean that only a certain percentage of fuel stored in the
tank is converted into useful energy. The rest is lost as heat and friction
and explains why teams constantly refine chassis designs to reduce aero-
dynamic drag.

 Beyond the frenzied world of Formula 1, many elements contribute toward
engine waste in the cars we lesser mortals drive. Running an air conditioner
consumes fuel without contributing to motion. Friction in engine pistons
wastes fuel, as does tire pressure and extra luggage. All told, as little as 14
percent of passenger car fuel is converted into useful energy. Clearly, this gas
guzzling engineering throwback is rife for disruption from electric cars and
advances in battery technology—time will tell.

 In many ways software development is as wasteful as the internal combus-
tion engine. Friction between development and operation causes delays.
Manually assembling multiple components and configurations within our own
software factories leads to lost time. Carrying excess inventory in the form
of unneeded infrastructure capacity adds extra cost. Add to this constraints
preventing access to critical systems and data during testing, and defects can
accumulate across the software lifecycle.

 Lean and Value Creation
 The traditional view of IT value has been internally-shaped. For decades, sys-
tems and applications have been designed, built, tested, and released to cus-
tomers, citizens, and end users where they hopefully influenced behaviors. All
this has changed. With the advent of cloud, mobility, and social computing,
consumers rather than producers call the shots. This means businesses find
themselves in the position of having to respond to the behaviors and desires
of their customers.

 For IT, this redefinition of business value means teams must focus on two
essential strategies. First, they must continuously reexamine the software ser-
vices they deliver from the perspective of the customer, and second, they
must constantly strive to minimize any interference or waste across the entire
software factory. This includes everything that impedes the flow of value to
customers and incurs more cost.

 This notion of value being “pulled” by customers and waste elimination is not
new. Lean pioneers and practitioners such as Toyota, Motorola, and Xerox
redefined manufacturing by applying these principles; understanding that many
forms of waste exist across production processes. And, because they add no
value to customers, must be clinically removed.

DevOps for Digital Leaders 35

 But can Lean principles be applied in IT, where, unlike traditional manufactur-
ing, waste isn’t visible across a factory floor through telltale signs like excess
physical inventory or idle machinery? Often due to its intangible nature, waste
in IT can be hard to identify yet alone eliminate.

 Interestingly, the delivery of software bares many similarities to a manufac-
turing process. In IT, we have the means to respond to value triggers from
our customers by quickly designing, developing, and releasing software ser-
vices. And, since the software delivery lifecycle represents a manufacturing
production line within a software factory, we have the guiding context upon
which identify all elements of waste that add no value to the business and its
customers.

 Eight Elements of Waste
 As illustrated in Table 3-1 , there are eight elements of waste or “Muda” (using
Lean terminology) that severely impact the IT group’s ability to increase the
value of software services.

 Table 3-1. Eight Elements of Waste (D.O.W.N.T.I.M.E)

 Type of Waste Examples Business Outcomes

 D efects Badly designed and poor quality code

 Non-functional performance issues

 Lost customers and revenue;

negative brand impact

 O verproduction Delivering features customers don’t

need or want

 Procuring extra capacity due

to unanticipated performance

requirements

 Delays, cost over-runs, and

budget problems

 W aiting Excessive release backlogs and

bottlenecks

 Infrastructure and data not available

for testing

 Change reviews; security and

compliance audits

 Slow time-to-market and

value; lost opportunities

 N on-value added

processing

 Lengthy problem resolution and

fire-fighting

 Team-based activities prioritized over

program-level objectives

 Morale issues; high-staff

turnover

 T ransportation Frequent release rollbacks

 Development/QA handoffs

 Application launch delays;

increased cycle times

(continued)

Chapter 3 | DevOps Foundations36

 Examining this table it should be noted that there are close relationships
and linkages between elements. For example, undetected code defects
resulting in performance problems may result in an organization purchas-
ing additional hardware capacity, which leads to excess inventory , which
increases the support burden. In situations like this, waste begets waste
and technical debt accumulates to such an extent it becomes difficult to
pay off. The result is that essential development is tied up on maintenance
and support activities.

 Originally coined by Ward Cunningham in the Agile Manifesto, technical debt
has tended to be reviewed from a development perspective 4 . After all, if soft-
ware defects can be identified and eradicated during early stages of develop-
ment, then production related problems (which could be significantly costlier
to fix) can be avoided.

 But technical debt can also be created in IT operations. For example, failing
to document or visualize business services (and supporting applications an
infrastructure) means teams could take longer triaging problems. Here the
waste is non-value added processing , which again (because of linkages) results
in more waste. In this case, increased transportation because a release has to
be rolled back.

 Using the eight elements of waste list, DevOps practitioners can begin a pro-
cess of identifying waste elements across the software lifecycle. It’s important
to understand that “toxicity” levels will vary, so mechanisms must be devel-
oped to continuously reveal new situations and conditions that can potentially
introduce more waste.

 Type of Waste Examples Business Outcomes

 I nventory (excess) Underutilized resources

 Partially completed work and

excessive work in progress

 Increased capital and

operational costs

 M otion Developers constantly switching

 Relearning and rework

 Lost productivity; talent

erosion

 E mployee

knowledge (unused)

 Closed retrospectives and stand-up

meetings

 No feedback established from

service management (e.g., call center/

service desk)

 Missed opportunities to drive

improvements

Table 3-1. (continued)

 4 The Agile Manifesto: http://www.agilemanifesto.org/

http://www.agilemanifesto.org/

DevOps for Digital Leaders 37

 It’s also critical not to restrict the exercise to new development. These may
become the debt burden of the future, but could only represent a small part
of the portfolio. Legacy infrastructure and production applications should also
be included because, even though they change less frequency, they often incur
significant management costs and overheads.

 Finally, debt and the associated waste should be reviewed as a continuum,
with special attention paid to integrations between new customer facing apps
and essential back-end business processes. For most enterprises, multi-chan-
nel engagement creates tremendous opportunity for value creation, but will
introduce more waste if they’re not integrated and coordinated with existing
back-end systems, applications, and call-center services.

 Waste Removal Strategies
 Today’s mobile and API-centric forms of service delivery mean that custom-
ers assess value based on extremely high levels of functional and operational
quality. They also expect businesses to deliver additional value in the form of
continuous change. With customer experience so important, it’s critical to
begin waste identification from the perspective of the customer; monitoring
and analyzing the usage and behaviors of applications and determining what
elements impact the total experience. This is especially important for mobile
applications, since factors beyond the control of IT departments (e.g., car-
rier network latency and cloud service performance) can quickly erode value,
however good the functional quality.

 Some immediate practices cross-functional teams can apply to help identify
and eliminate waste, include the following.

 Prevent Defects by Removing Constraints

 When development and testing is constrained due to lack of access to depen-
dencies (e.g., middleware, web services, and test data), defects can quickly
work their way into the code base. This is illustrated in a Service Virtualization
survey, which identified that on average, participants require access to 52
dependent elements for development or testing, yet have unrestricted access
to only 23 of these. 5

 To circumvent these issues, many development teams often attempt work-
arounds by hand coding (mocks and stubs), but this doesn’t provide for
realistic application behavior, causing test validation errors and the late

 5 VOKE Market Snapshot™ Report: Service Virtualization; https://www.ca.com/au/
register/forms/collateral/voke-market-snapshot-report-service-virtual
ization.aspx

https://www.ca.com/au/register/forms/collateral/voke-market-snapshot-report-service-virtualization.aspx
https://www.ca.com/au/register/forms/collateral/voke-market-snapshot-report-service-virtualization.aspx
https://www.ca.com/au/register/forms/collateral/voke-market-snapshot-report-service-virtualization.aspx

Chapter 3 | DevOps Foundations38

discovery of defects. Discussed further in Chapter 5 , a more scalable
approach is to incorporate Service Virtualization into parallel develop-
ment and test activities.

 Focus on Value to Prevent Overproduction

 New application features don’t necessarily mean more customer conversa-
tions and increased revenue. Unnecessary features can result in additional
maintenance overheads and cost. There are many methods DevOps practi-
tioners can use to reduce this form of waste, including:

• Incorporating application experience analytics into moni-
toring strategies to identify mobile app functions and fea-
tures that are not used

• Split or A/B testing and funnel or cohort analysis

• Refactoring code elements to reduce complexity, remem-
bering that the cheapest and most reliable components
are those that don’t exist!

 Smoothing Flow to Reduce Wait Times

 Like waste element #1, this waste can eventuate due to delays waiting on
dependencies during development and testing. In the VOKE report mentioned
above, 81 percent of participants identified development delays of waiting
for a dependency in order to develop software, reproduce, or fix a defect.
Additionally, 84 percent of participants identified QA delays of waiting for a
dependency in order to begin testing, start a new test cycle, test a required
platform, or to verify a defect.

 ■ Caution Never underestimate the wait times associated with accessing test data, since a

massive 20 percent of the average software delivery lifecycle is wasted waiting for data, locating

it, or creating it manually when none exists.

 Excessive wait times may also be due to problems managing highly complex
release and deployment processes. However good the code, its ultimate value
will be determined by how quickly it can be deployed into production. Manual
processes and fragile scripting not only compromise these goals, but also
increase the potential for defect code being released. These issues can be
addressed by:

• Ensuring all key stakeholders possessing the knowledge
to move a service swiftly across lifecycle are involved
early and often

http://dx.doi.org/10.1007/978-1-4842-1842-6_5

DevOps for Digital Leaders 39

• Using smaller batch sizes so that value is delivered to
customers at regular intervals

• Developing and automating reusable and repeatable pro-
cesses to simplify and streamline application releases

 Limit Non-Value Added Processing Through Data-Driven
Insights

 Fixing application problems provides limited value to customers. Rather than
wait for problems to occur in a production, IT operations should be involved
much earlier in the development lifecycle.

 Using tools to share information is especially valuable. By leveraging applica-
tion performance change impact analysis during a build process, for example,
developers can quickly determine any adverse performance conditions their
code is introducing.

 Reduce Transportation Cost by Automating Deployments

 When work is manually handed off from one team to another (e.g., developer
to test/QA, QA to operations), critical knowledge can be lost. This could
lead to additional delays or the highest transportation cost of all—release
rollbacks.

 There are many strategies to address these issues, including:

• Reducing the number of handoffs by automating standard
tasks and activities

• Ensure release automation tools provide an extensive
set of action packs and plug-ins so as to fully deploy at
an application level, while also integrating key supporting
processes (e.g., configuration management)

• Build more knowledge as releases progress (e.g.,
establishing application performance management in
pre-production)

 Eliminate Excess Inventory Across the Software Factory

 Minimizing inventory is the hallmark of Lean thinking. As in traditional manu-
facturing, there are many waste indicators in IT’s own software factory. In
development, partially completed work can become obsolete before it finds
its way into production and should be exposed to ensure it doesn’t degrade
or corrupt the code base. In operations, excess on-premise server infrastruc-
ture acquired as a fail-safe to address unanticipated performance problems
could be avoided by establishing monitoring in pre-production.

Chapter 3 | DevOps Foundations40

 ■ Note Costs can accumulate substantially when agile teams acquire specialist tools. Work

collaboratively to assess whether the additional cost (training or support) offsets the value delivered

to one team.

 Prevent Unnecessary Motion with Parallel Development

 While transportation waste is associated with the unnecessary movement
of software, motion waste involves the unnecessary movement of people. A
good example is task switching, where an API developer might shift focus to
a new project rather than wait for testing dependencies to become available.

 Apart from adding more waste (e.g., delays), task switching can introduce
many more problems, especially related to the productivity of developers due
to constant interruptions.

 Some simple strategies to reduce this waste, especially task switching, include:

• Try to ensure teams have all of the knowledge, tools, and
data needed to complete their assigned work

• Simulate and virtualize all dependencies so that develop-
ment teams can code and test in parallel

• Since as much as 50 percent of testing is wasted by teams
trying to locate test data or create it manually, consider
supplementing constraint-removal strategies with test
data management (see Chapter 5)

• Aim to eliminate unimportant work, meetings, and inter-
ruptions. If it isn’t delivering value, ask why your team is
doing it!

 Incorporate Employee Knowledge Using Feedback Loops

 While the feedback of production information is important to drive software
improvements and improve supportability, it isn’t the only place where knowl-
edge can be transferred.

 Service desks and call-center processes should also include mechanisms
to deliver (to development) important information gained from custom-
ers on their usage and response to new application features and functions.
Knowledge transfer should also be bi-directional. For example, application
experience analytics could (when integrated with incident management pro-
cesses or even social media) become an early warning mechanism to trigger
coordinated responses in the event of mobile app usage problems.

http://dx.doi.org/10.1007/978-1-4842-1842-6_5

DevOps for Digital Leaders 41

 DevOps Metrics
 With any IT-driven methodology or program, measuring the effectiveness
in a business context is critical. But since DevOps isn’t a formal framework,
organizations have little guidance in determining what metrics should be
used.

 This can be problematic and lead to a number of suboptimal practices:

• Efficiency status-quo —The IT team falls back to metrics
traditionally used to demonstrate technical proficiency in
meeting stability and resilience goals. Although these are
not necessarily wrong, DevOps metrics should also dem-
onstrate how new processes and automated technolo-
gies are impacting the business—for example by speeding
time-to-market and reducing lead times.

• Outputs over outcomes —Organizations gravitate to
metrics that are commonly used in assessing team-
level productivity. These can include output-based
metrics like number of features delivered or servers
provisioned. Metrics in this class can be counterpro-
ductive unless balanced with outcome-centric indica-
tors that show results achieved against desired quality
levels.

• Low-hanging fruit —Organizations select metrics that are
easily obtained but not necessarily useful. Since DevOps
success is predicated on cultural change, businesses must
also measure what’s harder to determine but potentially
more valuable—namely, how the adoption of DevOps
behaviors and values at an organizational level is impact-
ing the business.

 Anti-Pattern Metrics
 Before embarking on a metrics refresh, organizations should consider all exist-
ing measures and their applicability in a DevOps context. Particular atten-
tion should be given to carefully review those metrics and incentives that are
counter to DevOps principles, as illustrated in Table 3-2 .

Chapter 3 | DevOps Foundations42

 Suitability Checklist
 When reviewing and developing DevOps metrics, it’s also important to con-
sider each against a general suitability checklist:

• Obtainable —Culture and behavioral improvements are
important to measure, but metrics may be difficult to
obtain or quantify. Seek out other related data points to
help expose —e.g., staff retention rates/transfers as an
indicator of employee morale.

• Reviewable —Every metric must stand up to rigorous
scrutiny in a business context. Carefully review metrics
that can be easily collected, but add no tangible value—
e.g., lines of code produced per developer.

• Incorruptible —Determine whether each metric can be
influenced by team and employee bias. Seek out any
associated incentives that can work against a collabora-
tive DevOps culture—e.g., existing SLA bonuses inhibit-
ing change.

 Table 3-2. Problematic Metric Classes

 Metric Class Examples Adverse Effects

 Vanity Metrics Lines of code

produced

 Function points

created

 May be counterproductive since they reward the

wrong types of behavior—especially if incentives

are linked to the metric.

 Producing more code and features without

validation can inhibit other valuable activities such

as refactoring and design simplification.

 Intra-Team
Metrics

 Agile team

leaderboards

 Deployments/

changes prevented

 Beware of metrics that pit-teams against

each other and use vanity metrics as scoring

mechanisms.

 Strike a balance with metrics and rewards that

influence positive inter-team behaviors—such as

code sharing, peer reviews, and mentoring.

 Pay particular attention to metrics that promote

an anti-DevOps culture, such as rating operational

effectiveness on the ability to prevent releases and

deployments.

 Traditional
Metrics

 Mean-time-

between-failure

(MTBF)

 FTEs: Servers

 With faster delivery of services, some failure is to

be expected.

 Always consider that improving responsiveness

can be more important (and less costly) than

trying to prevent failures.

DevOps for Digital Leaders 43

• Actionable— Any metric must support improved decision
making. Exposing A/B testing results can for example be
a valuable way to quickly determine the effectiveness of
new functionality.

 Wherever possible, metrics should also be shareable and have relevance
across the software lifecycle to both development and operations. For exam-
ple, generating security scores at a cross-functional team and divisional level
can be used to inform teams about the risks of their actions.

 Metrics that Matter
 Having determined what not to measure, the next stage is to develop a can-
didate list of metrics supporting the DevOps program. One common mistake
is to measure too many elements, falling back to what’s easily collectable.
Additionally, metrics applicable to DevOps may be new to organizations (e.g.,
the speed of deployment, rate of change, and customer responsiveness), so
it’s important to think broadly how changes to work practices, process and
technology can support these goals.

• People —Staff related metrics can be the most difficult to
collect but are still powerful change indicators. Strong
consideration should be given to internal metrics like
staff retention rates and training, together with mentor-
ing and knowledge building (e.g., open source contribu-
tions and wiki development).

• Process —It’s important to consider how existing prac-
tices will help or hinder new targets being achieved, pay-
ing special attention to existing bottlenecks (e.g., security
audits only conducted after testing will impact deploy-
ment rates).

• Technology— Good metrics are those that help teams
drive improvements, even after failures (e.g., what is the
percentage of failed releases and what percentage of
these were due to code defects, manual processing, con-
figuration errors, etc.).

 When developing metrics, it’s important to maintain balance. Defaulting to
metrics skewed toward one particular area (e.g., operational or development
efficiencies) can have a negative effect in terms of behavioral improvement

 Figure 3-1 illustrates four dimensions and sample metrics that can be used to
measure the effectiveness of a DevOps initiative.

Chapter 3 | DevOps Foundations44

 Culture, Collaboration, and Sharing

 Metrics in this category are especially valuable because they provide an ongo-
ing indicator of acceptance/resistance to DevOps. Some metrics in this dimen-
sion will be easier to collect (e.g., staff retention rates/turnover) than others
(e.g., employee morale). It’s important therefore to look at measures across
other dimensions to understand how they impact this area. For example,
are mean-time-to-recover (MTTR) improvements positively impacting staff
morale, absenteeism rates, and responsiveness to change? Consideration may
also be given to automated surveys and employee feedback, as long as these
are fully transparent and actionable.

 Efficiency and Effectiveness

 Metrics here normally focus on elements of development capacity and opera-
tional capabilities. While traditional metrics such as server to sysadmin ratios
have been used, many organizations are now adopting more customer-centric
ratios like full-time-equivalent (FTE) to customers.

 Examining full costs on a transactional or application basis is another good
candidate metric, as it’s focused on improving data center efficiencies (e.g.,
energy and cooling). Other metrics such as cost of release are also good
since these can expose inefficiencies associated with acquiring, prepar-
ing, and maintaining physical infrastructure for development, testing, and
production.

Efficiency & Effectiveness Quality & Velocity

Customer & Business Value

NPS (Net promoter scores)
Customer conversion (by App / function)

Lead times
Revenue per user story

FTE to Customer ratios MTTR Cycle times

Rollback rates Deployment frequency

Operational support costs
Change / release cost burden

Culture, Collaboration and Sharing
Staff retention Morale / job satisfaction Mentoring

Cost per transaction / app

Wiki / open source contributions

 Figure 3-1. DevOps metrics dimensions

DevOps for Digital Leaders 45

 Quality and Velocity

 This dimension looks to measure data points with respect to service deliv-
ery. For organizations starting on a DevOps initiative, many indicators (e.g.,
percentage of deployments rolled-back due to code defects/outages/negative
user reactions) could initially be high. This may be a result of the extra time
needed to adopt new processes, combined with remediating existing techni-
cal debt and waste elements these metrics expose. However, with DevOps’
focus on establishing quality right from the start of development, this should
reduce over time.

 When paired, these metrics also provide additional insights. For example, if
the rate of rollbacks still increases during periods of low change volume it could
be indicative of serious problems, e.g., errors due to manual/scripted release
processes, task switching, and excessive handoffs.

 Other useful metrics in this dimension include:

• Cycle time —Measures the length of time it takes to com-
plete a stage or series of stages in a release operation. This
can be extremely valuable in exposing any bottlenecks.

• MTTR —This can be broken down into detection, diag-
nosis, and recover phases. MTTR is a great indicator of
how effective teams are in handling changes. For complex
deployments, there will be spikes, but this metric should
be trending down as DevOps becomes established.

 Customer and Business Value

 This category of metrics are externally focused and help measure how
DevOps supports business goals—like increased customer loyalty and faster
time-to-market. The manufacturing concept of lead time provides DevOps
practitioners with an analogous metric (time taken from when code starts
development to successful production deployment) and determines how well
DevOps is at meeting the need for rapid delivery of high-quality software ser-
vices. This metric is especially important to scrutinize because long lead times
could be indicative of code defects or testing constraints.

 Another interesting candidate is Net Promoter Score (NPS), which is a sim-
ple management method to measure customer loyalty. While this metric has
traditionally been used in other areas of the business (e.g., marketing), its
inclusion is valid since the loyalty of customers is increasingly determined by
how quickly high-quality software services and updates can be delivered to
via web sites and/or mobile apps.

Chapter 3 | DevOps Foundations46

 Additional Methods and Techniques
 With metrics developed across each of the four dimensions discussed previ-
ously, teams can begin a process of determining the relationships between
them. This is important so teams gain insight into what processes enhance-
ments and tools are needed to meet targets or address capability gaps.

 One simple and effective approach, as illustrated in Figure 3-2 , is business
impact mapping. This involves determining which DevOps processes will be
needed to support a business or customer experience goal, together with the
underpinning metrics, targets, and initiatives/tools across multiple dimensions
that support this outcome.

Net Promoter
Score (NPS)

(achieve 8+)

CONTINUOUS
DELIVERY

AGILE
OPERATIONS

Release Automation

Test-driven
development

Transaction tracing

Application
Performance
Management

Cycle Times –
reduce by n%

Software Defect Rates –
reduce by n%

Response times –
n% faster

Restoration times –
speed MTTR by n%

Metrics - Targets DevOps FocusBusiness Metric/Goal Supporting
Initiatives

 Figure 3-2. Metrics, targets, and initiatives linked to business outcomes

 Figure 3-2 illustrates that an organization is seeking to achieve a Net Promoter
Score of 8+. To support this goal, IT needs to deliver software releases and
new functionality faster, together with ensure a high-quality customer experi-
ence. Metrics and targets have therefore been set within the quality and veloc-
ity dimension, together with targets and supporting process/tool initiatives.

 As DevOps metrics programs develop, practitioners should also:

• Have regular and ongoing target reviews to ensure that
goals are not completely unrealistic or that existing pro-
cesses and tools are not delivering improvements.

• Consider removing persistent “green light” metrics when
targets have been consistently achieved.

• Avoid having every metric focused on velocity without
paying attention to customer satisfaction and loyalty.

DevOps for Digital Leaders 47

• Strive to prevent vanity metrics and operational or team-
centric bias creeping back into the program and distort-
ing the true performance picture.

• Beware of ranking teams based on targets—the best way
to compare teams is to measure things like customer loy-
alty (as described) and how successful teams are in meet-
ing their commitments.

• Give strong consideration to metrics, targets, and initia-
tives that foster peer review and openness.

• Carefully build incentives and reward programs that rein-
force the value of a strong collaborative culture.

• Involve business counterparts right from the start to
ensure customer and business data is held to the same
standard as operational/efficiency metrics.

• Match tools to the DevOps program, especially those
that can monitor and respond to real-time conditions
(such as transaction times, response times, and mobile
app crashes), but can also proactively detect and prevent
adverse conditions (such as code defects and release bot-
tlenecks) that impact performance.

 Summary
 At its heart, DevOps is about building a generative organizational culture
where business improvement is placed above everything else. But as this
chapter has illustrated that won’t always be straightforward, especially in
organizations beset by divisional friction and lack of direction. By leveraging
this chapter’s guidance, especially with regard to building high-trust teams, an
outcome-based metrics program and Lean thinking, organizations have a solid
foundation upon which to guide their DevOps programs.

 In Chapters 4 - 7 , we’ll look closely at the automated tooling needed to sup-
port this goal and how businesses can refit and re-engineer their own soft-
ware factories to manufacture high-quality software innovations, at speed. In
these chapters, we’ll examine critical tooling strategies across the software
lifecycle continuum—Build, Test, Deploy, and Manage.

http://dx.doi.org/10.1007/978-1-4842-1842-6_4
http://dx.doi.org/10.1007/978-1-4842-1842-6_7

 P A R T

II

 Essential
DevOps Tooling

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_4

 Build
 APIs for the Connected Business

 In the digital economy, building application programming interfaces (APIs) is
essential for executing ideas quickly and seizing new business opportunities.
APIs are the building blocks of digital transformation, enabling organizations
to deliver exceptional customer experiences, create new revenue streams and
connect employees, partners, apps, and devices to data—anytime, anywhere.
APIs are not necessarily a new technology, but in today’s digital world, they
have risen in prominence and become important to every facet of the enter-
prise. This in turn has increased the demand for effective API management.

 But what does an effective API management look like? A good place to start
answering this question is by examining a case study.

 Case Study: IceMobile
 IceMobile helps leading food retailers across the globe boost footfall and bas-
ket size. Ralph Cohen founded the then creative agency in 2002 after recog-
nizing that mobile devices offered a great potential for increasing customer
engagement, loyalty and, ultimately, spend. 1

 In 2012, IceMobile took two steps that transformed its business into the global
mobile loyalty program provider it is today. First, it merged with BrandLoyalty,
extending its reach beyond the Netherlands. Secondly, it built the Bright Loyalty

 1 Full story: http://www.ca.com/content/dam/ca/us/files/case-studies/icemobile-
cuts-rollout-times-with-ca-api-gateway.PDF

 C H A P T E R

4

http://www.ca.com/content/dam/ca/us/files/case-studies/icemobile-cuts-rollout-times-with-ca-api-gateway.PDF
http://www.ca.com/content/dam/ca/us/files/case-studies/icemobile-cuts-rollout-times-with-ca-api-gateway.PDF

Chapter 4 | Build52

Platform, which helps food retailers engage with shoppers on a personal level,
driving turnover, increasing basket size and bringing in new customers.

 At the solution’s front-end, the Bright Stamps product makes loyalty cam-
paigns digital. Shoppers can easily collect stamps and redeem using their mobile
phone, resulting in increasing spend and more people joining the campaigns.
At its back-end, the Bright Loyalty Platform analyses shopper data from retail-
ers’ back office point of sales (POS) and customer relationship management
(CRM) systems to ensure the shopping experience resonates with customers.

 Located in offices across 14 countries, IceMobile’s 120 developers, design-
ers, and engagement experts offer retailers a range of loyalty services. These
include concept and strategy, user experience design and research, solution
design, implementation, project management, and data analysis.

 When IceMobile talked to retailers regarding its product Bright Stamps, despite
commercial departments being enthusiastic about adding the Bright Stamps
solution to their loyalty programs, retailers’ legacy IT systems were often a
hurdle to overcome. “Retailers were concerned their IT departments, which
were often starved for time and budget, would not have sufficient resources
available for integrating IceMobile with their various legacy systems,” reveals
Jeroen Pietryga, IceMobile’s Chief Executive Officer.

 The company needed to find a safe and manageable way of accelerating and sim-
plifying the integration between its Bright Stamps solution and retailers’ back
office systems. “We wanted to take some of the IT headaches and risk away
from retailers’ IT departments,” adds Pietryga. “We wanted to make imple-
mentation faster, cheaper, and a better experience.” Application Programming
Interfaces (APIs) gateway provided IceMobile with the perfect solution. An
API gateway solution would only require limited changes to the food retailers’
back office systems while reducing the amount of time IceMobile engineers
needed to spend on implementing the integrations.

 By simplifying integration, IceMobile has cut implementation times from 14 to
8 weeks while minimizing impact on retailers’ busy IT departments.

 The solution also ensures IceMobile meets security standards for inter-oper-
ating with retailers’ IT systems; ensuring the digital stamps IceMobile collects
and stores for customers are safe.

 The API gateway also enables IceMobile to:

• Minimize impact on its own and retailers’ IT departments.

• Integrate with almost any technology used by a retailer,
safeguarding sales. To date, the solution has simplified
connections with multiple back office systems for various
food retailers. These back office systems include POS sys-
tems, such as Wincor Nixdorf, NCR, and IBM, and CRM
systems, such as Siebel, eFuture, and SAP.

DevOps for Digital Leaders 53

• Standardize the way it delivers its services as it expands
across the globe.

 From Little API Acorns Big Things Grow
 Like IceMobile, many companies have wisely invested in an API strategy and
are reaping the benefits. Of course, this includes some pioneers, like Netflix
and the streaming of content to over 200 devices types, thanks to APIs, or
Twitter, who receives a staggering 13 billion API calls to its platform each day.
But it’s more about big business than big numbers. APIs enable Expedia to
conduct $2 billion of business through its partner affiliate network, and 60
percent of eBay’s listings are made through its API.

 While software-driven companies have much to benefit others in the
“physical product” world have realized the API carpe diem moment. Withings
have transformed the humble bathroom scale into a hub for a fitness eco-
system, while Nest Labs’ thermostat is a marvel in intelligent home energy
management.

 So irrespective of whether business sell sedans, soda, or sneakers, executing a
successful API strategy can deliver numerous advantages.

• Customer satisfaction —No matter how fast the new fea-
tures are released, customers still expect more. By expos-
ing applications and data to external partners, developers,
and customers, APIs can significantly ease the feature and
release pressure on IT teams.

• Scale and reach —With API enabled networks, business can
work with partners to build new sales channels without
relying on existing functions to generate and support them.

• Business efficiency —Customers look to the provider for
specific customizations. If each of these requests had to be
addressed, development could be distracted from deliv-
ering more strategic features across the customer base.
By exposing functionality through APIs, implementation
teams and partners could provide this as a differentiated
service, which is another revenue generating opportunity.

 APIs provide the essential glue that binds together internal business depart-
ments, allowing them to operate as a seamless whole. They enable resources
and information to be decoupled from functional silos and made available for
greater business benefit. So if sales needs access to marketing data or market-
ing needs customer analytics, the secret sauce will be an API.

 This is extremely beneficial from a DevOps perspective. Since APIs help unify
people, process, and technology across the software lifecycle, every group

Chapter 4 | Build54

becomes a partner of the other. If development needs access to application
performance information from production monitoring tools, it’s an API that’ll
service the request. If a production-based API needs to be tested against
changes to a back-end system, it’ll be another API (together with service visu-
alization software) that helps removes the constraints.

 API Management: Stakeholders and
Requirements
 Because different stakeholders perceive APIs in different ways, they will
require specific management capabilities in context of their role.

• Business executives –APIs and management must be a
strategic enabler for launching new innovative products,
forging new business partnerships and improving the cus-
tomer experience. These stakeholders will be especially
interested in planning and tracking API revenue and ROI.

• API owners/product managers —This group will have respon-
sibility for creating and owning an API strategy and road-
map. As such, they be subject matter experts and oversee
how APIs are released and managed. They’ll also review
API roadmaps with key stakeholders to determine API
priorities, including new enhancements.

• Enterprise architects —Being responsible for translat-
ing digital initiatives into an optimum technology infra-
structure, they’ll regard APIs as the connective tissue.
API management will provide tools to help them model,
design, shape, and optimize critical integrations across
both legacy and modern infrastructure.

• Application developers —Developers build front-end appli-
cations, while discovering, acquiring, and consuming APIs
as their gateway to enterprise data and capabilities. For
this group, API management represents stable, secure,
and scalable access to both cloud and on-premise sys-
tems, with tools that help them leverage APIs quickly by
removing development and testing constraints.

• Security managers —Because APIs “open the enterprise,”
they create new security challenges and opportuni-
ties. For this group, API management is about providing
advanced threat protection, data encryption, and authen-
tication, all without compromising the goal of increasing
connectivity and convenience.

DevOps for Digital Leaders 55

• API support group —Regardless of which team supports
APIs (development or operations), advanced monitor-
ing will be needed to ensure consumers have optimum
access to the API and related services (e.g., back-end sys-
tems and cloud infrastructure).

 ■ Note Because of the importance of APIs, many companies organize teams around their

development and ongoing support. Rather than engage multiple stakeholders on an as-needed

basis, dedicated cross-functional API teams are established. This can be a very effective DevOps

practice since it removes functional silos and aligns teams around desired business outcomes—

versus managing APIs in technology silos.

 APIs Are Products
 APIs are the building blocks of great products. With APIs, modern applications
can be developed faster and integrating existing systems becomes easier. And
because APIs can help facilitate new partnerships and business opportunities,
they can in fact be considered actual products in their own right.

 As with any software product, APIs will go through a lifecycle where they
are designed, created, secured, managed, and optimized. With revenue and
reputation increasingly riding on APIs, this will need to be conducted on an
enterprise scale. API management provides organizations the ability to achieve
this, as long as capabilities embody the principles of DevOps and continuous
delivery. While many individual tools address the discreet needs of the indi-
vidual stakeholder groups, the goal of API management should place overall
business improvement above everything.

 Managing the API Lifecycle
 API management embodies the principles of DevOps by managing the API
lifecycle; providing the platform, visibility, and tools that architects, developers,
security professionals, and administrators need to drive continuous delivery.
Without effective API management, organizations will increasingly struggle to
deploy, control, measure, and optimize the growing volume and variety of APIs
needed to support digital transformation initiatives.

 Since API management inherently addresses the DevOps lifecycle for APIs, it
should address all elements (see Figure 4-1) and empower every stakeholder
described in this chapter.

 It should be noted from Figure 4-1 that the definition, design, deployment, pro-
motion, protection, and optimization of APIs is not limited to just the develop-
ment team. IT operations and business stakeholders also need to be involved
to ensure APIs are aligned to the overall program initiatives.

Chapter 4 | Build56

 Ongoing measurement and monitoring is often overlooked in the API lifecycle.
For a DevOps-driven API strategy to succeed, organizations need to be able
to evaluate API utilization and performance as applications evolve; answering
questions, such as who is consuming APIs and how often are they doing so?
Which APIs are meeting business goals? Where are the latency issues? Will
the API scale to support demand spikes?

 Analytics play a critical role in answering these questions. In a DevOps con-
text, they are also especially valuable in serving essential information and feed-
back to cross-functional team members in order to drive API improvements.
This includes:

• Performance analytics —Providing developers with real-
time insight into operational performance, such as trans-
action speed, availability, and API latency. This helps ensure
apps are meeting their users’ performance expectations,
particularly during peak usage periods.

• Business analytics —Help organizations monetize APIs by
tracking usage and consumption by external partners
and developers. This means they can better respond to
market demand and prioritize future development invest-
ments in APIs.

• App experience analytics — Report on metrics, such as app
usage and revenue generation over the lifecycle of the
app; providing complete return on investment visibility
both in the short and long-term.

 Automation and integration are essential for capturing such insights with mini-
mum effort. Effective API management is founded on intelligent and integrated
tools that simplify different stages of the lifecycle for different stakeholders.

 Figure 4-1. API management lifecycle

DevOps for Digital Leaders 57

 For developers, API management solutions need to provide a simple point and
click interface that can automatically generate scalable enterprise-grade APIs
from data sources as diverse as RDBMS, NoSQL, existing APIs, and JSON.

 This is particularly important as legacy monolithic systems are supplemented
with dozens of microservices, each fronted by an API. While microservices
decrease the size of each deployment, they increase the number of com-
ponents deployed. API management tools are vital for helping developers
navigate the microservices maze: first by auto-generating APIs and then by
managing and providing simple yet secure access.

 Access and discovery can also be simplified by leveraging an API gateway,
which frees up time for developers to focus their efforts on delivering what
the customers want—useful and engaging apps that work on multiple devices.

 Essential API Management Plays
 While API management provides capabilities to many stakeholders, the stron-
ger methods will be those that unify teams toward continuously improving
business outcomes from the API strategy as a whole. By reviewing their stra-
tegic API objectives (e.g., accelerate mobile development), organizations can
assess API management capabilities using a number of tactical initiatives, or
“plays”.

 Create and Integrate APIs

 In the past, organizations have relied on APIs from SQL calls and hand-coded
business logic—often developed on an ad hoc basis. However, new digital
imperatives now dictate adopting scalable and sustainable approaches to cre-
ating API-based apps faster and unlock the value from legacy applications and
disparate data stores. And with DevOps processes needing to support the
development of microservices that can be changed faster, this pressure will
only intensify.

 To address this, API owners, enterprise architects, and business executives
should consider adopting methods and API management solutions that expand
the scope of the API lifecycle management beyond gateway enforcement con-
trol toward the creation of APIs closer to business information.

 The value proposition here is a significant reduction in the time and cost
associated with manual-based API creation. Combine this with immediate
API performance monitoring and security (discussed next) means quality and
compliance becomes established as APIs are created.

Chapter 4 | Build58

 As illustrated in Figure 4-2 , the API management needed to facilitate rapid API
creation and integration should include:

• Connect SOA, ESB, and legacy applications —The ability to
streamline integrations across disparate systems, middle-
ware, and databases by providing protocol adaptation,
mediation, and transformation.

• Aggregate data from multiple sources —Assist engineers
integrate SQL and NoSQL databases with fine-grained
data access controls and the flexibility to deploy and scale
to current and future architectures.

• Connect cloud services —Enable the creation of performant,
yet cost-effective API-centric digital platforms that integrate
and orchestrate on-premise systems and cloud solutions.

• API creation from reactive logic — Instantly generate enter-
prise-grade REST APIs from multiple data sources, with
logic-based processing to apply business rules to API calls
at runtime.

 Figure 4-2. API Management for API creation and integration

 ■ Note Using reactive logic models to assist in the creation of APIs can be significantly faster

than hand-coding. These techniques are valuable to DevOps practitioners since concise application

logic is easier and less costly to support.

DevOps for Digital Leaders 59

 Secure the Open Enterprise

 As more information assets and engagement channels become digitized, secu-
rity is a major concern across the API lifecycle—from the business owner and
the developer to the user.

 For developers, API management represents stable, secure, and scalable
access to back-end systems and information stores, as well as a source
of tools and utilities to help them obtain and leverage APIs more effi-
ciently. API management allows them to simply consume existing secure
encrypted APIs, for example, without needing to scribe a unique security
module for each.

 In a DevOps context, information security professionals will work with devel-
opers to identify and neutralize critical threats, enable robust and workable
policies, offer consistent and repeatable security for mobile apps, and provide
the capabilities needed to deliver features such as single sign-on and privileged
user access. The goal shouldn’t be to wait for security issues later, but rather
to help teams establish strong security as they design, create, and test APIs.
This may include

• Protection against threats and vulnerabilities —API manage-
ment will provide threat detection and neutralization for
key Open Web Application Security (OWASP) vulner-
abilities such as SQL injections, cross-site scripting, and
denial-of-service attacks.

• Controlled access with SSO and identity management —
Securing apps and their connections, while maintaining or
enhancing the all-important user experience.

• Providing end-to-end security for apps, mobile and IoT — API
management will protect the digital value chain from
front-end app to back-end systems. It should extend con-
trolled access to all touch points —from web apps to IoT,
while supporting convenient features such as social login
and risk-based authentication.

 Unlock the Business Value of Data

 Competitive pressure, rising customer expectations, and the increasing pace
of change mean that applications—especially for mobile and the IoT—must
be delivered faster and more efficiently. Developers look for API management
to help them discover, acquire, and consume APIs quickly, while also provid-
ing tools that speed up or eliminate the “dirty work” of repeatedly building

Chapter 4 | Build60

core functionality to handle data and security. Therefore, comprehensive API
management should support:

• Simplified and controlled access to data —API management
will provide a controlled way to access data that shields
developers from unnecessary complexity. It should aggre-
gate and orchestrate data, while ensuring compliance
through authorization, shaping and policy management.

 ■ Tip To protect customer privacy and ensure compliance during API testing, consider integrating

with management solutions that provide synthetic test data.

• Support a wider partner/public developer ecosystem —Solutions
will empower internal and external developers by stream-
lining API consumption lifecycle tasks such as discovery,
acquisition, design, and collaboration.

• Reduce mobile app delivery time —Developers will need
access to reusable services in the form of SDKs and APIs
that provide security, messaging, and offline storage.

 Accelerate Mobile and IoT Development

 Digital transformation initiatives that leverage APIs create new business
opportunities and channels. Businesses look to API management as a central
launch point for their digital strategies, with a range of capabilities that will
support their efforts to build a robust digital ecosystem by expanding partner-
ships, nurturing developer communities, monetizing data, and leveraging digital
connections to improve operations and efficiency.

• Monetize APIs to generate revenue —Advanced API man-
agement will provide the functionality needed to package,
price, and sell data products or services via any com-
bination of free, freemium, purchase, subscription, or
consumption-based models. It should also simplify inte-
gration with analytics and billing services.

• Build digital ecosystems to enhance business value —This
involves providing granular control, compliance, security,
and reporting mechanisms needed to support the expan-
sion of digital value chains across a wide range of plat-
forms, apps, devices, partners, and third parties.

DevOps for Digital Leaders 61

• Create efficiencies through analytics and optimization — By
providing instrumentation and analytics that allow them
to optimize technical and business performance, API
management will encourage developers to build more
efficient, performant, and scalable digital ecosystems.

 API Management: Essential Integrations
 When considering API tooling, it’s important to seek out integrated capabili-
ties that help establish information feedback loops that cross-functional teams
need to drive API improvements.

 API Performance Monitoring
 API performance monitoring provides a huge opportunity to increase quality,
but has proved challenging. This is primarily because development and opera-
tions teams use two classes of tools to address specific performance issues.

 API Management Gateways offer tremendous detailed insight into APIs from
the client-side perspective (e.g., API throttling, policy, and routing), but lack
the depth of analysis offered by Application Performance Management (APM)
solutions—especially clear insight into the impact of API performance on
critical business services.

 Application Performance Management (APM) solutions provide powerful analysis
of application performance (e.g., transaction tracing and differential analytics),
but lack inclusion of API-level data for related monitoring and root-cause
analysis, as well as specifics on the gateway itself.

 As a result, many problems can arise:

• An operations team receives calls that API gateway ser-
vices are underperforming, but this is reactive and after
the fact because they’ve received no alerts in APM that
indicate latency issues.

• An application support team is called to field problems with
mobile transactions using an API gateway, but because
APM visibility ends at the firewall or proxy and they can’t
see the actual gateway services themselves, they struggle
to identify the root cause.

• An API development team has gateway insight, but because
they lack visibility into back-end application performance,
they cannot easily determine overall service impact.

 Bridging the gap between API management and APM solutions via a dedicated
integration point (see Figure 4-3) can help teams collaborate effectively.

Chapter 4 | Build62

 By monitoring detailed API metrics and data traversing gateways in combination
with APM analytics, teams can detect slow growing problems and fast acting
acute ones. This allows faster response to problematic API service latency
conditions before customers are impacted.

 When including detailed analytics at the API layer (e.g., front-end latency, pol-
icy violations, and routing failures), root cause analysis becomes more thor-
ough and conclusive.

 Through real-time and historical analysis of API performance information,
developers and operations have a clear understanding on what API design
improvements are needed.

 ■ Note Integration between API gateways and APM solutions is especially valuable in pre-production

testing. With complete end-to-end API performance visibility before a system goes live, teams are better

positioned to remediate complex performance issues before they impact the business.

 API Development and Testing
 A 2015 Freeform Dynamics report indicated that it is 2.8 times more likely
that digital disrupters are utilizing APIs in development. 2 However, teams
remain constrained by circumstances impeding success. In a Voke report, for

 Figure 4-3. API performance monitoring extends the functionality of API management and

APM solutions

 2 Freeform Dynamics, Exploiting the Software Advantage: Lessons from Digital Disrupters, October
2015: http://transform.ca.com/rs/117-QWV-692/images/457955-Exploiting-the-
Software-Advantage-2015.pdf

http://transform.ca.com/rs/117-QWV-692/images/457955-Exploiting-the-Software-Advantage-2015.pdf
http://transform.ca.com/rs/117-QWV-692/images/457955-Exploiting-the-Software-Advantage-2015.pdf

DevOps for Digital Leaders 63

example, 56 percent of respondents stated that critical resources were not
available when development and testing teams needed them. 3

 API management solutions simplify the process of developers gaining access
to APIs, but if back-end systems aren’t available for testing connectivity, there
can be delivery delays.

 An elegant solution to this problem is the integration API management with
service virtualization solutions. Described in more detail Chapter 5, service
virtualization emulates the behavior of dependent systems; enabling develop-
ment and testing to be conducted free of constraints.

 Service virtualization is a great pairing for API management. It allows develop-
ers access to a developer portal where they can quickly discover, learn to use,
and integrate APIs into their apps. Then, with virtualized services, these apps
can be tested against virtual back-ends, loads, latency, etc., to validate that apps
under development apps will perform optimally in a variety of conditions.

 When combining service virtualization with API management, teams should
seek out integrated capabilities that all allow developers and testers to:

• Secure access to a directory of virtual services, enabling
faster service discovery and consumption.

• Switch automatically between real and virtualized envi-
ronments, improving development velocity, increasing
contract and data fidelity, and lowering defect counts.

• Faster creation and easier maintenance of virtual services
by leveraging API management data.

 ■ Note According to the aforementioned Voke report, simultaneously accessing APIs and virtual

services accelerates application development by 97 percent.

 Virtualizing the behavior of APIs and services and adding API management
makes it easy for developers to access APIs that have been published and
secured. As illustrated in Figure 4-4 , working prototype APIs can be published
and connected to virtualized back-end web services, so developers can begin
using them as soon as they are available, rather than having to wait until the
process is complete. This also allows teams to operate in parallel, where dif-
ferent development teams can work on different features at the same time.

 3 Market Snapshot™ Report: Service Virtualization by Voke Research: https://www.
ca.com/au/collateral/industry-analyst-report/voke-market-snapshot-
report-service-virtualization-iar.register.html

https://www.ca.com/au/collateral/industry-analyst-report/voke-market-snapshot-report-service-virtualization-iar.register.html
https://www.ca.com/au/collateral/industry-analyst-report/voke-market-snapshot-report-service-virtualization-iar.register.html
https://www.ca.com/au/collateral/industry-analyst-report/voke-market-snapshot-report-service-virtualization-iar.register.html

Chapter 4 | Build64

 Taking a Strategic Approach
 To fully embrace the APIs opportunity, organizations will need more than just
tools, they will need a strategy that will help engender an understanding that
APIs are more than just a technology; they are a digital enabler.

 Program managers (or API owners) need to be responsible for creating this
strategy, communicating it to executive-level decision makers as well as the
architects and developers on the front line.

 The first step should involve establishing a clear business objective and a vision
statement, which needs to be aligned with the company’s overall mission and
goals. Making this link is often quite easy.

 For example, a retailer’s vision might be, “Give our customers a compelling
shopping experience while offering the best possible quality, service, and
value”. While the API vision might be, “Leverage APIs to build a high-quality
and engaging shopping experience that seamlessly crosses all of customer
engagement channels.”

 The next step should be to build a business model around the API vision,
outlining the details of:

• Costs, resources, and efficiencies — The systems, relation-
ships, activities, and other resources the program will
leverage and how the program will empower the enter-
prise to deliver on its strategic goals.

• Value, revenue, and innovation — The customers, markets,
and channels the program will target and how technical
innovation will make it possible to generate new revenue.

QA/TestDEV PRODUCTIONPRE-PROD

Customer
Experience

API Management and Service
Virtualization

API
Management

Release Plan

CI/Build Functiona
l testing

UA
T

Integration
testing

Performance
testing

Deploy to
pre-prod

Deploy to
production

Code
commit SCM

VIRTUAL
SERVICES

Design
Spec

Requirements

Set up dev
environment

Set up test
environments

Set up
pre-prod

Set up
prod

 Figure 4-4. Eliminating API development constraints to enable parallel work streams

DevOps for Digital Leaders 65

• Operational processes — The tools and approaches needed
to effectively control, measure, optimize, and deploy a
large number of APIs throughout the development and
operations lifecycle.

 At the core of this business model, there should be a value proposition that
clearly outlines the real, measureable outcomes that the API program will
deliver to the business.

 API owners or product managers should also engage the business when defin-
ing the API vision and delivery model. This will ensure:

• Alignment with core business processes

• Business value realization

• Effective measurement criteria.

 Taking a strategic approach to APIs will enable organizations to overcome
existing challenges around application integration, data silos, and fragmented
omni-channel experiences.

 Building an API Future, Faster
 Digital disruptors have already recognized the value that APIs and effective
management can deliver in terms of customer engagement, satisfaction, and
retention. They’re already using APIs both internally and externally: more than
65 percent of digital disruptors use APIs internally for building their web appli-
cations, mobile apps, and back office systems and externally for integrating
third-party services or enabling external developer access to their systems. 4

 Having the right management strategy and tooling can help organizations
advance their API business goals by increasing maturity levels (see Figure 4-5).

• Digital services —Organizations develop ad-hoc APIs that
digitize simple transactions and make them available and
secure for third-party use. These APIs bring traditional
services to the Web and mobile devices.

• Partner integrations —Organizations expand their business
model by developing a top-tier API with numerous capa-
bilities, and integrate it with select and trusted partners.
While the API itself enables the connection, the requisite
SLAs, agreements, documentation, and support have to
be managed “offline”.

 4 Freeform Dynamics, Exploiting the Software Advantage: Lessons from Digital Disrupters,
October 2015

Chapter 4 | Build66

• Partner Infrastructure —After success with some integra-
tions, organizations look to roll them out to a larger com-
munity of partners via an API portal or marketplace. They
offer base capabilities for anyone who wants to consume
them or create entirely new use cases. Here they not
only provide the back-end for existing user experiences,
but infrastructure for new ones as well, with standardized
processes around SLAs and support.

• API ecosystem —As organizations continue to monetize
APIs and learn, they make deeper investments into build-
ing innovative, new capabilities that create competitive
advantage. Here, APIs push the limits into a broad eco-
system, creating entirely new sources of revenue and
enabling the adoption of entirely new technologies.

 Figure 4-5. API maturity Levels

 Summary
 Effectively managing APIs is a critical business differentiator. As Mohan
Subramanian, associate professor of strategy at Boston College’s Carroll
School of Management, confirmed: “APIs provide the key to unlock new
growth opportunities at an unprecedented scale in our digitally connected
economy. The capability to manage APIs will soon become a primary driver of
competitive advantage.” 5

 Having the right API management tools and processes in place, organizations
will be able to build the connections, digital services, and user experiences
they need to succeed.

 5 The Chief Digital Offer’s Guide to Digital Transformation: https://www.ca.com/
au/collateral/ebook/the-chief-digital-officers-guide-to-digital-
transformation.register.html

https://www.ca.com/au/collateral/ebook/the-chief-digital-officers-guide-to-digital-transformation.register.html
https://www.ca.com/au/collateral/ebook/the-chief-digital-officers-guide-to-digital-transformation.register.html
https://www.ca.com/au/collateral/ebook/the-chief-digital-officers-guide-to-digital-transformation.register.html

DevOps for Digital Leaders 67

 As discussed in this chapter, this requires taking managing the entire API life-
cycle so that organizations can consistently deploy, measure, and optimize the
growing volume and variety of APIs needed to support digital transformation
initiatives.

 In the next chapter, we’ll continue our exploration of the DevOps-enabled
software factory by examining all the testing constraints facing practitioners
today. We’ll also describe some essential automated testing strategies needed
to ensure that optimal quality and compliance is consistently achieved in the
most cost-effective way possible.

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_5

 Test
 Continuously Championing Quality

 The volume and velocity of software innovation afforded by DevOps is per-
haps the biggest driver of IT’s shift to this new method of delivery. But when
organizations neglect quality in the head-long rush to DevOps glory, the glass
can only ever be half empty.

 The business-technology landscape is littered with many examples of what
happens when software speed has been pursued at the expense of qual-
ity. Perhaps the most extreme is Knight Trading, where a software update
accessed outdated code (8 years old) that made more than $440 million in
bad trades in less than 30 minutes. 1 , 2

 DevOps principles and practices are therefore not only intended to improve
the tempo of software releases but also increase quality—and as with delivery,
this must happen continuously!

 However, with DevOps’ focus on an automating the software pipeline, it’s
clear that traditional methods for ensuring quality must now be questioned
and reviewed. Separate teams working in silos, working with centralized pol-
luted test data, and performing manual tasks late in the software development
cycle is no way to sustain quality.

 C H A P T E R

5

 1 http://www.bloomberg.com/news/articles/2012-08-02/knight-shows-
how-to-lose-440-million-in-30-minutes
 2 https://www.sec.gov/litigation/admin/2013/34-70694.pdf

http://www.bloomberg.com/news/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
http://www.bloomberg.com/news/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
https://www.sec.gov/litigation/admin/2013/34-70694.pdf

Chapter 5 | Test70

 Progressive businesses understand implicitly the connection between speed
and quality; increasing the cadence of releases, yes, but championing qual-
ity through the application of advanced DevOps automation. One illustrative
example is AutoTrader.com, the online marketplace for car buyers and sellers.

 Case Study: AutoTrader.com
 Every month more than 18 million people use AutoTrader.com to search for
a used car. The site does more than host advertising for sellers; it also helps
people research and compare cars and trade in their old vehicle. 3

 Based in Atlanta, Georgia, AutoTrader’s goal is to make exchanging vehicles
simpler and more secure than ever before, while maximizing value for private
and trade buyers and sellers.

 When AutoTrader’s services were mainly available through a browser, it saw
itself as a media company. The emergence of smart mobile devices and the
application economy has changed all that.

 “Right now we’re a technology company. The technology aspect is very
important to AutoTrader as a business,” reveals Adam Mills, Senior Manager
of Application Development at the company.

 Ten years ago AutoTrader released just four web services updates a year;
today it expects to release one almost weekly. As Mills explains, “We have
to keep up with changes to current operating systems and devices as well as
evolve our own offerings. Customers expect us to deliver great new function-
ality in weeks rather than months.”

 Customers also expect the same excellent experience whether they are
accessing AutoTrader via an app or a browser on a mobile, desktop, or laptop.

 In a highly competitive market, this excellent experience is a key differentia-
tor for AutoTrader. “Our app has to be the best,” explains Mills. “All it takes
is a couple of bad customer experiences then everybody’s talking about it on
Twitter and we lose market share.”

 As the functionality of AutoTrader.com and the number and variety of devices
it supported grew, software testing became complex, costly, and time-con-
suming. “We had to set up huge emulation environments, buy the licenses, and
ensure all the services were talking to each other,” recalls Mills. “But because
there were so many interdependencies, we couldn’t complete all the different
tests in the same timeframe. We then had to find all the physical devices, plug
them in, and test our code on every one.”

 3 Full Story: http://www.ca.com/content/dam/ca/us/files/case-studies/autotrader-
avoids-300000-in-testing-costs-with-ca-service-virtualization.pdf

http://www.ca.com/content/dam/ca/us/files/case-studies/autotrader-avoids-300000-in-testing-costs-with-ca-service-virtualization.pdf
http://www.ca.com/content/dam/ca/us/files/case-studies/autotrader-avoids-300000-in-testing-costs-with-ca-service-virtualization.pdf

DevOps for Digital Leaders 71

 With plans already underway to adopt a DevOps approach to bring together
its disparate development teams, AutoTrader realized that virtualizing differ-
ent services would enable even greater unity.

 AutoTrader searched the market for a service virtualization solution that sup-
ported the DevOps approach, inviting a select number of vendors to demon-
strate the solutions.

 After implementing a solution in six weeks, AutoTrader began using the solu-
tion to simulate apps behaving normally and performance issues. “Teams can
test how resilient their services are and answer those key ‘what if ’ questions,
like ‘what happens if the database crashes?’” comments Mills.

 Mills envisages that soon the last human interaction with a piece of code will
be when a developer checks it in. Test, build, and deployment will be auto-
mated, reducing processes that previously took weeks to just minutes.

 AutoTrader has been able to accelerate testing, while improving quality and
freeing up resources. As Mills confirms, “The solution means we can complete
testing in hours rather than weeks. Previously we would have needed hun-
dreds of testers to check performance on every device, but now we can test
all devices automatically while our team focuses on higher value activities.”

 The time taken to set up a new testing environment has also been cut from
two weeks to two days, with costs dramatically reduced. AutoTrader.com has
been able to:

• Cut integration time from three days to three hours

• Save and average of 567 man-hours—or 2.5 people—per
release

• Avoid $300,000 in test hardware and software costs

• Decrease software defects by 25 percent

 As Mills concludes, “By getting new releases and services out the door quickly,
we can provide a better experience to millions of car buyers and sellers and
continue to differentiate in a competitive market.”

 Testing Times
 Apart from illustrating the importance of software quality, the AutoTrader
story shows that this doesn’t have to slow things down. As the forward-think-
ing Mills suggests, automation will be key for testing to become established
within both continuous integration and continuous delivery processes.

 Testing is essential to DevOps because it brings the discipline smack-bang into
the development processes and avoids the problems (e.g., release delays and
quality issues) created by leaving QA as a gate or rubber-stamp function only
performed at the very end of the cycle.

Chapter 5 | Test72

 This isn’t to say that the role of tester will be subsumed with development,
but the discipline will change. Rather than providing a transactional service
to developers (e.g., executing tests and handballing the bad news), the focus
of testing will shift toward a more consultative role that will help developers
learn how to write better tests and improve their approaches to scanning for
quality. Developers aren’t necessarily hard-wired to look for quality issues, and
even though the vast majority do care about quality code, they are still going
to miss issues and opportunities for improvement.

 ■ Tip To establish testing expertise DevOps style, leaders should consider positioning their

teams in a way that can add the most value across the software development lifecycle. This may

involve embedding specialists within agile product teams or even creating a center of excellence.

 As advanced automation becomes more pervasive, QA and testing profes-
sionals will need to become better skilled at fully leveraging it. This involves
providing a comprehensive and elevated test discipline rather than just exe-
cuting a series of day-to-day tasks.

 Some new skills include:

• Thinking beyond pass or fail —Helping the business under-
stand what the customer actually experiences and how
that can be best simulated during testing. Essentially sup-
plying the right data and real-world conditions needed to
better support and enhance a quality experience.

• Intimate understanding —With the complexity surrounding
applications today, QA, and testing staff need to become
far more proficient at understanding all the intricacies. At
a minimum, this means visualizing all dependencies and
being able to remove constraints.

• Assurance to analytics —QA has traditionally been focused
on documenting defects and reporting back to develop-
ment. This must shift toward collecting and aggregating
data from a broad range of automated tests to determine
the actual cause of defects and where more rigorous
testing is needed.

• Early and thorough testing —With agile increasing the vol-
ume of user stories, it makes perfect sense to incorpo-
rate testing into the acceptance criteria. At this early
stage any progression into the sprint should be depen-
dent on reviews involving QA, but also security and IT
operations too.

DevOps for Digital Leaders 73

 ■ Note With agile and DevOps, quality is baked into the SDLC, not bolted on at the end. This

requires establishing ownership at a cross-functional level, not devolving to one team. Automation

to support this goal should be available to all stakeholders, not just QA/testing teams.

• Mentorship over conflict —Rather than constantly being
called in to address fragile developer-written tests,
DevOps focused QA will work closely with their coding
colleagues to continuously improve testing resilience.

• Ambiguity to clarity —Vague requirements stored in multi-
ple formats leads to defective software and a sub-optimal
customer experience. Teams should seek out methods
to map changing requirements to visual models and elimi-
nate ambiguous requirements and the costly defects they
create.

• Quality over quantity —Having many redundant, duplicate
tests guarantees nothing but cost overruns and delays.
QA and testing teams should consider advanced automa-
tion methods that generate the smallest number of test
cases needed for 100 percent functional coverage—all
linked to the right data and expected results.

 Agile Testing Trifecta
 A key goal of DevOps should be making testing an accelerator, not an
obstacle to fast application delivery with the highest levels of quality. To
support this, more advanced testing tools are needed, equipping QA and
testing teams with three essential capabilities needed to support agile
and continuous delivery methods. This “testing trifecta,” as illustrated in
Figure 5-1 , includes:

• Test automation to create test cases right from requirements

• Generating synthetic test data to be used on demand

• Test constraint removal by virtualizing every environment
that needs to be accessed

Chapter 5 | Test74

 Test Automation
 Today, nearly every company is in the software business. Although an orga-
nization may sell a tangible product, their use of software to streamline and
enhance the customer experience means they must place higher importance
on quality application delivery. Frequently, applications that are rushed through
the development cycle without adequate testing often encounter costly
defects that impact the customer relationship.

 Just like building a house, the foundation is key to successful software con-
struction. If the foundation has issues, there is a high likelihood for expensive
delays further into the process. Using the right development tools at the onset
will help ensure that the software foundation is properly defined, constructed,
and tested while keeping quality and end user goals top of mind.

 Incomplete Requirements Equals Faulty Software

 Many quality problems eventuate during the requirements design phase. This
is because software requirements are typically ambiguous, incomplete, and
stored in many different formats by numerous people within the organization.
Test cases are then manually defined from incomplete requirements and thus
the stage is set for foundational cracks to appear even before the application
has been built.

A/B, Split

Mobile

Functional

Unit, UI

Performance

User Acceptance

….

Test
Automation

Test Data
Management

Test
Constraint
Removal

 Figure 5-1. Testing trifecta for agile and DevOps

DevOps for Digital Leaders 75

 Further, the manual definition of test cases is a slow and unsystematic process
that leads to perhaps 10-20 percent functional test coverage. Testers end up
testing the same features over and over again without knowing for certain the
results. As a consequence, defects are detected later much in the develop-
ment cycle, leading to costly rework.

 An Automated and Agile Approach

 If testing is going to keep pace with continuous delivery goals, it needs to
become much more automated and agile. Adopting a requirements-driven
(or customer centric) approach is the first step and may require software
solutions to force the change. With the advanced tools, testers can generate
the right test cases needed for maximum coverage. Test assets can be derived
directly from the design and updated automatically to reflect changing user
needs.

 Tools in this category allow user stories to be imported and modeled as an
active flowchart (see Figure 5-2).

Trade
Currency

Type
of Trade

Vesting
Currency

Start End

Initial

Cancel

Adjustment

YEN

GBP

USD

EUR

AUS

USD

GBP

EUR

YEN

 Figure 5-2. Agile requirements design allows user stories to be verified with end users

 Active flowcharting helps eliminate requirements ambiguity and reduce
defects early in the design phase. This class of tool will also generate the
smallest set of automated tests needed for maximum coverage. Importantly,
and to support the drive to testing as a discipline becoming much more
proactive, these tools also help testing teams know which features should
receive the most rigorous testing based on analytics and metrics gathering
capabilities.

Chapter 5 | Test76

 Achieving Complete Test Coverage

 As applications become more complex and distributed, business logic is no
longer found only in the user interface (UI) and the database (as with cli-
ent/server models), but extends across multiple tiers and technologies. This
becomes further complicated when applications consume underlying services
from cloud providers or third-parties, or use highly interactive presentation
layer technologies.

 Organizations are also implementing more agile development methods from
distributed teams, yet the use of shareable, reusable test assets between these
teams is limited or non-existent. Traditional tools designed for more linear
style waterfall development are often employed, but lack extensibility, only
supporting the needs of one group. For example, code-based unit testing tools
for developers that are unusable by QA and functional user interface (UI); fail-
ing to translate errors into repeatable defect identification needed by devel-
opers to catch bugs earlier.

 This requires a much higher degree of test automation and collaboration
among stakeholders. As testing efficiency and effectiveness become para-
mount, a new continuous testing model supported by advanced automation
technologies should be the goal. Only through this coordinated approach can
organizations build the scale needed to meet future demands.

 Meeting these goals can only be ensured when every layer of the applica-
tion and the complex interactions between components is automatically
tested and verified throughout the software lifecycle. This involves provid-
ing complete test coverage with the ability to invoke and verify the behavior
of each component, singularly or as an end-to-end service. Solutions in this
class must therefore provide industry-leading standards support, with native
integration to J2EE servers, integration suites, and ESBs. To help strengthen
the DevOps toolchain, solutions will also integrate popular open source tools
(e.g., Selenium Builder for UI testing), thereby enabling end-to-end testing
from user interface all the way to back-end systems.

 Case in Point: Mobile Testing

 True extensibility means one tool coordinating and running functional tests,
test UIs, and APIs on multiple mobile devices under various conditions.
Traditional approaches to testing fall down in the mobile world because it’s no
longer sufficient to just to test the “function” of the application. Code needs
to be tested using the same conditions that the app will run under when in the
hands of a user, with experience-based metrics and test reports reviewable by
both the user acceptance teams and development to further improve quality
and expedite defect resolution.

DevOps for Digital Leaders 77

 To support the goal of ensuring high-quality during continuous integration
(critical for mobile apps where changes updates occur more frequently), such
solutions should provide unattended automation coverage. This involves exe-
cuting tests against real mobile devices connected locally or from the cloud
(see Figure 5-3) immediately code is committed.

 Virtualized services described in more detail later in this chapter address the
common mobile testing challenge of testers needing access to dependent
systems for end-to-end analysis. Tests should also allow for different profiles
simulating network conditions, location, background applications, and device
orientation. This way teams can report and benchmark the user experience
of different personas at various points in the app workflow.

 Figure 5-3. Automated mobile tests on smartphones, using multiple OS versions on multiple

carrier networks and in different locations worldwide

 ■ Tip When mobile apps are in full production, consider using app experience analytics tools for

continued insight into both usage and performance. Results can be valuable for determining where

functional and performance improvements are needed.

 Test Data Management
 The second part of the testing trifecta and an area rife for improvement in
the software development lifecycle is in test data management. Every tester
needs quality test data and quickly. The challenge is getting the right data to

Chapter 5 | Test78

match their tests when they need it. As companies have improved their devel-
opment processes, moving from Waterfall to agile, testing has lagged behind.
Again, manual processes cannot keep pace with a company’s test data need,
with companies relying heavily on teams of people constantly creating and
maintaining test data.

 Another major challenge when managing test data is ensuring compliance
with legal and regulatory requirements. Many organizations apply the neces-
sary rigor when protecting personal and sensitive customer information in
production, but neglect to consider the implications when working with data
in non-production environments. In the event of non-compliance, this can
mean significant consequences, not the least brand reputation, but also finan-
cial loss due to fines and penalties.

 Many industry-specific regulations come with their own unique sets of test
data challenges, and some introduce new complexities. Take the General Data
Protection Regulation (GDPR) for example. The GDPR is designed to protect
the rights of European Union (EU) citizens where the processing of their per-
sonal data is concerned.

 Although many companies will have already adopted privacy processes
and procedures consistent with the directive, the GDPR contains a num-
ber of new protections for EU data subjects and threatens significant
fines and penalties for non-compliance (up to 4 percent of annual global
turnover or 20m euros, whichever is greater) once it comes into force
in May 2018.

 GDPR introduces many new obligations in areas such as data anonymization,
breach notification, and trans-border data transfers, to name just a few. Many
have implications for test data management. One example is the “right to
erase,” where individuals may notify businesses processing their data what
they may or may not use that data for, including testing.

 Complying with obligations like this carries a huge overhead. If customers
state they don’t want their data used (even it is masked), then testers will
need to acquire subsets of data and apply filtering rules. They will also need
to ensure their methods can track every record not approved for testing and
be fully auditable.

 Many businesses might pursue programmatic solutions to these test data
problems, but this only increases the development burden and poten-
tially introduces additional fragility. One alternative, of course, is to use
more modern synthetic test data generation to avoid these problems
completely.

DevOps for Digital Leaders 79

 Facets of a Gold Standard Solution

 To address the complex issues involved with the acquisition of quality data and
regulatory compliance, modern test data management solutions will provide:

• Synthetic test data generation —Synthetic data contains all
of the characteristics of production but none of the sen-
sitive content. This ensures teams are provisioned with
secure, realistic data that maintains referential integrity as
part of a move toward a “Live Data Exclusion” model for
testing. In addition to addressing compliance issues, and
as illustrated in Table 5-1 , synthetic test data generation
can address other constraints.

 Table 5-1. Removing Constraints with Synthetic Test Data

 Constraint Resolution

 Regulations and compliance Lower risk as data is generated

 Data functional coverage Measure and get 100 percent coverage

 Capacity to identify data “holes” by comparison between

environments or directly identify data from test cases

 Test database size Only stores most efficient set of test data

 Provisioning delays Provisioning in minutes, on-demand, through a web portal

 Capacity to book data for each tester

• Scalable end-to-end platform —Tools should clone subsets
of data into target environments and be capable of secur-
ing millions of data rows in minutes using automated data
profiling and advanced masking engines.

• Test data allocation —Tools must facilitate automated data
discovery for testers to receive exact datasets, linked to
their test cases.

• Test data warehouse —The ability to store pools of test
data as reusable assets in a central repository and test
multiple versions and releases in parallel.

 The following checklist can also be useful in assessing the efficacy of test data
management solutions:

• Provides a standard set of data to test

• Is “ production-like ”

Chapter 5 | Test80

• Covers all possible tests that need to be run, including
future and negative scenarios

• Contains just enough data to test repeatedly

• Is up-to-date, while also containing and supporting all
previous data

• Contains absolutely no sensitive data

 Combining with Test Automation

 The test automation methods described in the first part of this section, espe-
cially the ability to create test cases right from requirements, are powerful
capabilities in their own right. However, combine them with test data manage-
ment and testers can move beyond just executing tests to proactively driving
quality improvements.

 By way of example, consider a two-way integration between test data man-
agement and agile requirements definition. Here, test matching functionality
should be available to locate or create the data needed to execute the opti-
mized test that has been built straight from requirements. The test data itself
would be stored in a central test data warehouse where it can be provisioned
on demand and used in parallel with development efforts.

 Through dynamic building, testers can request the data they need based on
specific criteria and receive it in minutes from a self-service web portal. The
provisioned data is cloned and version controls are applied to update data to
immediately reflect any changes in requirements.

 Using the integrated approach, teams benefit in many ways:

• Distributed test teams can work with multiple application
versions with matching test data

• Automatically locate or create test data based on specific
testing needs

• Test for outliers, unexpected results, and negative
scenarios

• Significantly reduce the time and resources required to
provision test data

• Generate synthetic data (data from scratch) without the
need to mask production data

• Create test data quickly for use in service virtualization
to speed testing and increase quality; feeding data directly
to service virtualization engines and linking test data with
virtual end-points

DevOps for Digital Leaders 81

 Implementing a test data management strategy is crucial to realizing the goal of
continuous application delivery. By making test data accessible during require-
ments design, teams can streamline and eliminate the bottlenecks associated
with test case creation and locating the right test data.

 Test Constraint Removal
 There is a fundamental shift in the way enterprises build applications today.
In the early days of mainframe and client/server applications, you had a much
more limited scope of applications—all of the components from the database
to the UI could be under one development and testing team’s control.

 After the Dot-Com days of the early 2000s, a new style of composite applica-
tions arose. The new approach to developing software, including agile, created
two new challenges for organizations

• Constraints created by the highly parallel development efforts

• Dependencies on consistent behavior of the components
in the system

 These complications increased the complexity and cost of developing and
maintaining composite applications.

 Applications today are the result of many decades of “building systems on
top of systems,” which creates huge chains of dependencies. These complex
architectures mean software development is more difficult, more costly, and
more complex than ever before.

 Many large organizations now find that many of systems they depend on such
as mainframes, databases, and external services are constrained and not acces-
sible by developers and testers when they are most needed.

 For instance, a needed mainframe may be off-limits, a system of record could
have bad data, or a third-party service may still be under development.
Attempts to reproduce these environments—by manually coding stubs and
managing test data—are costly and inconsistent.

 One customer with constraint issues put it this way, “I can’t do anything until
I have everything… and I never have everything!”

 In a recent Voke Market Snapshot Report on Service Virtualization (January
2015), over 500 companies validated that constraints are a major hurdle to
innovation in the software development lifecycle. 4 The report mentions that:

• 80 percent of teams experience delays in development
due to constraints everywhere across the SDLC

 4 https://www.ca.com/au/collateral/industry-analyst-report/voke-market-
snapshot-report-service-virtualization-iar.register.html

https://www.ca.com/au/collateral/industry-analyst-report/voke-market-snapshot-report-service-virtualization-iar.register.html
https://www.ca.com/au/collateral/industry-analyst-report/voke-market-snapshot-report-service-virtualization-iar.register.html

Chapter 5 | Test82

• 56 percent of critical dependencies are unavailable when
development and test need them

• 70 percent of teams face prohibitive restrictions (delays,
time, and fees) when needing to access third-party systems

 Service virtualization solutions can solve these constraint issues by capturing
and modeling dependent systems. As virtual versions of the real thing, these
services simulate the constrained components in any environment, providing
low-cost, 24/7 available models.

 When developers and testers use service virtualization, the services behave
and perform similar to the real thing, but without the underlying hardware
and software complexity of a physical system. Development and testing con-
tinue just as they always have, but less constrained, and without contention
between teams for environments, labs, test data, and so on.

 Although service virtualization solves many different development problems,
four common ones are seen repeatedly:

• “Shift left”—Enabling parallel software development, test-
ing, and validation for faster time-to-value with earlier
defect resolution (see Figure 5-3)

• Infrastructure availability—Eliminating much of the con-
current demand for environments and hardware that
agile development creates

• Performance readiness or solving the challenging prob-
lems of properly evaluating the scalability of applications

• Scenario and data management—Often eliminating the
need for complex test data management, system setup,
and other complexities

Dev
1

Dev 1

Dev
2

Dev
1

Dev
3

Dev
2

Dev
3

System Integration Performance UAT

Dev 3

System

Performance

UAT

Dev 2

Integration

Reduction in SDLC
Faster Delivery

Without Service Virtualization – Uncertain delivery schedule – defects persist until UAT

With Service Virtualization quality
effort moved earlier in lifecycle

 Figure 5-3. “Shift-left” testing with service virtualization

DevOps for Digital Leaders 83

 One common problem that service virtualization solves is in the area of inte-
gration. Customers buy companies, they provide service to third parties, or
they are updating applications for functionality, compliance, or architecture.
Each of these challenges presents an opportunity for service virtualization to
improve the software development process. Integration teams and customers
have the resources they need for software development and testing, without
the added expense of acquiring additional hardware and software.

 When time-to-market matters, service virtualization offers an excellent
opportunity to shorten development lifecycles. Service virtualization reduces
the constraints of software development, allowing more teams to effectively
work in parallel, without underlying dependencies. Typically, service virtualiza-
tion users experience a 25-50 percent reduction in release times.

 A huge opportunity for service virtualization is in the area of performance
engineering. Creating a lab capable of handling and testing to production
capacity loads is difficult and resource intensive. Furthermore, ready access
to systems such as mainframes and transaction servers may be impossible. All
this makes performance testing expensive, unreliable, and inconsistent. Some
teams might have a small window for testing, while others will have to wait for
an entire application architecture to be assembled before any testing can com-
mence. But by using service virtualization, teams can performance test each
individual component, identifying many performance problems earlier in the
lifecycle, and reduce, even eliminate, the amount of final performance testing
needed in a production-like lab.

 Using traditional Waterfall methodologies for developing software, much of
the activity of development and testing of the application happens in a series
of steps, one after another. But by eliminating constraints common in typi-
cal software development practices, service virtualization enables much of
the SDLC to operate in parallel and the steps within it become less time
consuming.

 Using service virtualization, developers can have their own private environ-
ments for coding, directly from the laptop. They don’t share environments and
don’t need to wait for other developers to finish their work.

 With service virtualization, much of the testing at a component level can
“shift left,” or be moved earlier in the SDLC. Because each component can
be tested individually (instead of waiting for a complete assembly), unit and
regression testing happens sooner and is more complete, and defects are
identified long before integration or user acceptance testing. Finding defects
earlier means developers fix issues at the point in time they incur the lowest
cost. This avoids defects leaking into later stages or even into production and
become harder to resolve because developers have been moved onto other
projects.

Chapter 5 | Test84

 As teams increase service virtualization maturity, regression and individual
component testing become increasingly automated. Now validation as early as
code check-in is possible, making defect detection a consistent and repeatable
process. Again this is possible because service virtualization allows compo-
nent level testing in isolation, without underlying dependencies.

 Once automation is implemented, you can easily make it a continuous process.
Using this approach, any change breaking interfaces, contracts, or use patterns
are easily detected before the code disrupts other services or applications.

 The deployment of service virtualization at one large bank solved two critical
challenges. First, by eliminating system dependencies, testing began far earlier
in the development cycle. Defects in code no longer lurked until UAT, but
were found much earlier.

 Additionally, the bank’s formally serial processes were set in parallel, dramati-
cally reducing release times.

 Using virtual services reduces the demand for physical hardware and test
labs. This approach is distinctly different, and complementary to, hardware
virtualization. With service virtualization, you virtualizes services and business
functionality instead of hardware.

 When demands for hardware decrease, so do costs. The challenges and costs
of provisioning labs and equipment, software and configurations disappear.
The physical hardware demand decreases dramatically, freeing budgets for
application and business investments instead of capital assets. Demand for
data center rack space, power, and storage also decrease.

 In performance testing, service virtualization helps customers reduce cost and
increase quality and flexibility in several ways. Customers can load test at the
component level. Instead of waiting until the application is complete, compo-
nents are tested for volume and capacity independently, locating bottlenecks
and issues early.

 Production-only systems such as master databases, mainframes, and third-
party systems not normally available for load testing are virtualized, creating
an always-ready, highly scalable virtual back-end immune to traditional load
testing constraints. This benefits users both in convenience and by reducing
the cost associated with replicating expensive back-end systems.

 Customers may also face third-party access or software license fees. Service
virtualization eliminates the need for highly scalable versions of these systems
by virtualizing their behavior. For organizations selling services, virtualized ver-
sions of their entire platform are made available to customers in virtual form.
Validating against a virtual back-end ensures production readiness without the
complexities of full production-style dev/test implementations.

DevOps for Digital Leaders 85

 Using service virtualization addresses many thorny issues associated with test
data management. For example, organizations struggled to set up just the
right scenarios, only to “burn” them with a test cycle. Or, find it difficult to
construct test scenarios for edge conditions and business logic. In such cases,
it often becomes more expensive to set up the test harness than do the test!

 Virtualizing behaviors such as edge conditions, negative test scenarios, and
error handling are easily configured in the behavior of the virtual service and
are never “burned” since the virtual service is simply playing back behavior
responses.

 With service virtualization, “test data” and scenarios are easily versioned and
changed for each new requirement. In addition, when two test cycles or teams
have differing needs for test data, they will not collide in the test lab.

 Summary
 With the advent of agile development, testing as a discipline is changing radi-
cally. Using the approaches described in this chapter, testing can move beyond
being a separate siloed function employed at the end of cycles, to becoming
a more proactive, continuous, and analytical discipline that firmly establishes
quality, whatever the pace of the delivery.

 While achieving this goal may require changes in mindset and organizational
structure, what’s indisputable is the need to adopt a comprehensive testing
approach to address end-to-end automation needs, manage test data, and
remove all constraints.

 In the next chapter, we’ll examine the software releases strategies organiza-
tions should consider as they move to a more continuous method of delivery.

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_6

 Deploy
 Building an Agile, Resilient, and Scalable

Continuous Delivery Pipeline

 To keep pace with demands for new features and application updates, digital
transformation must be driven by continuous delivery—the ability to rapidly
and reliably release software across the pipeline at any time.

 By almost every metric, companies that address this imperative create a
competitive advantage over those that lag. Yet few companies have actually
developed the process maturity and scalable automation needed to deliver
applications at the volume, velocity, and quality levels now required to remain
competitive.

 Before looking the challenges and strategies needed to increase maturity, let’s
examine how advanced DevOps thinking backed by release automation has
helped technology giant Citrix significantly cut deployment times and reduce
errors during the release process. 1

 C H A P T E R

6

 1 Full story: http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-
boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-
automation.pdf

http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-automation.pdf

Chapter 6 | Deploy88

 Case Study: Citrix
 Citrix provides a range of virtualization, networking, and cloud solutions to
around 400,000 customers worldwide. To help create more productive work-
spaces both for its customers and own users, Citrix is continually looking at
ways to improve its business operations and enable innovation. As part of this
drive, Citrix created an Office of IT Delivery Optimization in December 2014,
which is tasked with evaluating and improving all aspects of IT. As part of its
optimization efforts, the team is embracing DevOps principles. As Eugene
Lehenbauer, Worldwide IT Delivery Optimization Group Manager at Citrix,
explains, “Adopting a DevOps approach to IT delivery will help us achieve bet-
ter cross-team collaboration, faster delivery, and greater quality.”

 Although individual development, architecture, and design teams at Citrix had
already embarked on their own DevOps journeys, the company wanted to
take a more centralized approach to maximize results and share best prac-
tices. “Supporting innovation and free-thinking is really important at Citrix,
so we didn’t want to impose a specific toolset,” says Lehenbauer. “We did,
however, want to give teams the option of using a proven enterprise platform
for automating application deployments to help free up their people from
repetitive and mundane tasks.”

 During the proof of concept exercise, Citrix moved from manual release
processes to fully automated release processes, reducing deployment time
by 80 percent. But that was not enough for the Citrix team. Development
was inspired to re-architect the one large “MyCitrix” application into many
smaller pieces, which, along with release automation, enabled the application
deployment time to be reduced further to 94 percent.

 “Achieving such impressive and immediate quantifiable results has really
helped accelerate the adoption of DevOps principles across the business and
inspired development innovation,” explains Lehenbauer.

 A central dashboard permits everyone involved to view the status of all
releases, giving teams the information they need to act quickly and providing
an audit trail for development and operational teams alike.

 The weekly updates to MyCitrix are managed via a release automation solu-
tion. “Since deploying Release Automation, we’ve achieved faster delivery
times and fewer issues. As a result, we now have more developers focused on
innovating, rather than reacting,” added Lehenbauer.

 Release automation has been a catalyst for Citrix’s adoption of DevOps prin-
ciples. It has enabled Citrix to take an enterprise-level approach to application
delivery by automating application release tasks and orchestrating its continu-
ous delivery toolchain.

DevOps for Digital Leaders 89

 Citrix has been able to significantly accelerate its application delivery and
reduce the errors and time required during the release process. This has
helped the company to be more responsive to customer needs, ensure com-
pliance and auditability, and focus on innovation instead of repetitive tasks.

 Obstacles to Continuous Delivery
 As the Citrix story demonstrates, continuously delivering software is an
extremely collaborative process that spans multiple departments, from devel-
opment to test, to release management to operations. With so many stake-
holders and motivations, the challenges faced by development-focused teams
can be very different than those confronting operations professionals.

 Development Challenges
 With an emphasis on increasing throughput, major obstacles are delays and
release bottlenecks. For example:

• Manual, time-consuming, error-prone environment provi-
sioning and release processes

• Numerous errors happening throughout the applica-
tion release cycle and lots of detective work to find the
source of problems

• Inefficiencies caused by the uncoordinated adoption of
open source tools, leading to duplication of effort, redun-
dant solutions, and disjointed integration

• Slow response to customer feedback and market needs
impacting customer retention and acquisition

 Operations Challenges
 With an emphasis on ensuring stability, major challenges involve guaranteeing
resilience as the volume and velocity of deployments increases. For example:

• Fractured release processes; managing with spreadsheets,
scripts, and tools

• Difficulty managing/tracking the volume of releases as
more agile development ensues

• Long weekends, low staff-morale and stress due to prob-
lems when finally deploying to production

Chapter 6 | Deploy90

• Double-digit application outages or downtime happening
each month and needing an “all hands on deck” approach
to resolve

• Loss of customers and revenue due to downtime/outages
or errors in application deployments

 Finding Common Ground
 Regardless of the issues facing each team, it's important that common ground
and consensus is reached by tracking all issues preventing successful business
outcomes. This is a shared exercise and involves all stakeholders collectively
working to determine where the organization as a whole is on the path to
automating software releases that drive a continuous flow of value to the
business and its customers.

 ■ Tip Consider organizing a continuous delivery “current state” workshop that brings all

stakeholders together. These may include application owners, developers, enterprise architects,

security managers, change managers, release managers, operations, and support.

 To facilitate open discussion, some good conversation-starters include:

• In terms of continuous delivery, what are our agreed
business goals and metrics?

• How are we managing and executing application deploy-
ments? What elements are heavily scripted and rely on
manual intervention?

• How are we configuring environments from development
through to production? Are different teams using differ-
ent processes?

• Across the software pipeline, what are the readily visible
bottlenecks in the application release process?

• What automation tools are currently leveraged (e.g., con-
tinuous integration and configuration management)? Are
teams using different tools?

 By jointly answering questions like these, teams can develop a structured
understanding of where there may be weaknesses across the entire release
pipeline and identify opportunities to automate and improve processes.

DevOps for Digital Leaders 91

 ■ Tip Try not to restrict analysis to release teams and processes only. Look for opportunities

where automation can help drive improvements in development and testing. Careful attention

should be given to how the “current state” affects the work of others. For example, if there are

release delays, how does this impact development? What processes are they using to circumvent?

 For example, are development teams being pulled off important refactoring work because of

delays? Is testing being pushed late in the cycle or neglected because teams think they have time

to do it later?

 Continuous Delivery Maturity
 As with all new technologies and best practices, organizations will be at differ-
ent points on the journey to continuous delivery (see Figure 6-1). Some will
have already begun, often by adopting facets of agile or even DevOps, while
others will just be starting out. In fact, it’s not uncommon for different teams
across IT to be at different points in adoption.

CO
NT

IN
UO

US
 D

EL
IV

ER
Y

M
AT

UR
IT

Y

Manual
Scriptin

g

Automated

Continuous

Optimized

BUSINESS VALUE

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

?

Optimized
Organization
for DevOps

Continuous
Improvement

End-to -End
Connection

Consistency &
Collaboration

Heroes &
Heavy Lifting

AG
IL

E
M

AT
UR

IT
Y

Silos, manual handovers, waterfall,
one release/year, monolithic apps,
long term project/resource
planning, error prone release
processes

DevOps, end -to -end delivery,
incremental agile/sprint release

cadence, multi -component micro
apps, “on the fly” scrum planning,

reliable and continuous releases

Release Automation

 Figure 6-1. Continuous delivery maturity levels

 Level 1: (Manual)
 At this level, success depends on the competence and heroics of the people
doing the delivery. Teams are very much operating in silos. Application releases
are error-prone and infrequent and the business is badly positioned to act
quickly on new opportunities, defend market position, or retain customers.

Chapter 6 | Deploy92

 Level 2: (Scripting)
 Deployment processes are planned per release, and status is managed
and tracked. Automation may exist for some deployment capabilities (e.g.,
scripts). Teams are probably using version control/repositories (e.g., Nexus)
and doing automated builds using tools like Jenkins/CloudBees. It's likely
that provisioning or configuration management tools like Chef or Puppet
are used to help with delivery, but no application-centric end-to-end release
orchestration is employed.

 Level 3: (Automated)
 Here, there are common, reusable, automated application delivery processes
established across environments and releases. Release processes, release
metadata, and release artifacts are monitored and tracked under full lifecycle
control. Delivery automation exists at the environment release level, which
may include leveraging existing provisioning and deployment automation capa-
bilities (which may not be scalable).

 Level 4: (Continuous)
 At this stage, release automation orchestrates application release promotion,
enabling predictable, monitored, and measurable continuous delivery from
development to production. Organizations can deploy applications consis-
tently across different types of environments and releasing software is a rou-
tine and relatively low-risk event.

 Level 5: (Optimized)
 Now all elements are working in a fully orchestrated fashion to provide a
zero-touch deployment—from planning to production. Continuous optimi-
zation of end-to-end application delivery processes through feedback loops,
with deployment patterns, scenario simulation, and analysis of operational
release data are used to continuously improve cost-performance of applica-
tion delivery. Teams manage multiple applications (multi-services) through the
continuous delivery pipeline, which becomes a single point of control. There
is also a strong focus on resilience and continuous availability.

 No matter where you sit on the continuous delivery maturity curve, one thing
is clear—every new level provides tangible benefits. Processes become more
automated and standardized. And teams become more productive, focusing
on delivering differentiating features rather than managing unplanned work
and maintenance tasks. They can handle the growing tempo and complexity
of applications, while still ensuring quality and resilience.

DevOps for Digital Leaders 93

 Accelerating Maturity: Three Ways
 As Figure 6-1 illustrates, the adoption of automated release processes and
tools typically drives major inflection points in a continuous delivery journey.
There are three important considerations.

 The First Way: Connect End-to-End Release
Management
 Scripting to Automated

 Taking an end-to-end release automation approach is essential in order to
execute a successful continuous delivery strategy. Key to this is the ability
to automate and standardize application releases all the way from develop-
ment through to production, combined with capabilities to plan, manage, and
optimize the release pipeline to improve quality and processes. Rather than
act in isolation, release automation must easily integrate with other processes
and tools (e.g., continuous integration, provisioning, and configuration man-
agement) across the continuous delivery toolchain; seamlessly scaling as the
volume, velocity, and complexity of applications grow.

 Taking this step to end-to-end release automation also supports DevOps
adoption. It becomes easier for teams to have the release transparency, com-
munication, and consistency needed for more purposeful collaboration.

 More importantly, cross-functional teams gain control and visibility of the
entire release pipeline, looking at the release process systematically versus
in silos.

 At this and any stage it’s important to measure how improvements are help-
ing support the business goals of continuous delivery that were identified
before any toolset implementation. For a large Fortune 100 financial services
company participating in a release automation ROI study, this involved increas-
ing application release rates across the software lifecycle. As stated by the
manager of DevOps enterprise release and deployment, “One of our core
application deployments was done twice a week due to lack of automation,
intensive manpower, and complicated deployment procedure. After automat-
ing this application deployment with release automation, the application is
being deployed at least 50 times in a week, all the way from continuous inte-
gration to production.” 2

 2 The Total Economic Impact™ of CA Release Automation, December 2015: http://
www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-
economic-impact-of-ca-release-automation.pdf

http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf

Chapter 6 | Deploy94

 ■ Tip Never underestimate the people impact when introducing new automated release

methods. Rather than enforcing enterprise adoption, consider small but important projects where

benefits can be quickly demonstrated. This can become the catalyst for wider support.

 The Second Way: Operationalize Feedback Loops
 Automated to Continuous

 While automation is essential for continuous delivery, it’s only the start of
the journey. As automated end-to-end release processes become firmly
entrenched, many new release challenges emerge. Taken individually or as a
whole (as illustrated in Table 6-1), these pressure points drive a shift to better
pipeline management.

 Table 6-1. Pressure Points Increase the Need for Advanced Release Automation

 Application Content
Complexity

 Infusing releases with feedback more quickly

 Prioritizing deployment of the right content

 Demonstrating implementation against business requirements

 Preventing “polluted” content from reaching production

 The Pipeline Multiplier
Effect

 Planning, tracking, and prioritizing many complex multi-level

applications and independently developed services

 Managing dependencies and avoiding conflicts

 Sharing resources between multiple teams, projects, and

timelines

 Pipeline Tooling
Expansion

 Juggling a growing breadth of open source, home-grown, and

third-party commercial tools used across the enterprise by

different teams

 As these pressure points intensify, organizations need to consider processes
for executing multi-team, cross-app, composite releases, while ensuring
all dependencies are handled. The proliferation of moving parts requires a
“big picture” view of the pipeline to maintain throughput, contain issues, and
ensure fast feedback.

 More importantly, the continuous delivery pipeline is becoming the single
control point and application delivery is becoming streamlined, predictable,
and risk-free. At this stage, release automation is orchestrating tools and
processes beyond deployment, including application lifecycle management
(ALM) and service management processes (e.g., change management). This is
essential for DevOps, since it strengthens feedback loops and better informs
decision-making.

DevOps for Digital Leaders 95

 Many more teams within in the enterprise should now be running apps
through the single control point. If they are, they are better equipped to estab-
lish a framework of continuous delivery best practice that’s valuable across
the organization.

 ■ Note According to the 2016 State of DevOps report, high-performing IT organizations deploy

200 times more frequently than low performers, with 2,555 times faster lead times. 3

 The Third Way: Optimize the Continuous Delivery
Pipeline
 Continuous to Optimized

 Although few departments are operating at this level, it is the pinnacle toward
which all teams should aspire.

 With the continuous delivery pipeline being too important to fail, attention
should become focused toward making the pipeline (so many teams depend
upon) as efficient, stable, and resilient as possible.

 This involves shifting toward mastering the art of releasing multi-app, cross-
app, multi-team applications and making deployments more predictable and
efficient. Improving business execution through accelerated feedback loops
will be another benefit, and by establishing a culture of continuous improve-
ment, teams will embrace a “fail fast” culture and then apply the lessons
learned within their release processes to prevent future problems.

 This notion of continuous improvement is well illustrated by a director of
DevOps tools management at a leading Fortune 100 financial services com-
pany, who stated, “ Agile and continuous delivery can be nothing but a journey.
You are never done; you are constantly moving the needle. There is always
something you can do.” 4

 Essential Toolchain Integrations
 While it's important to review functional aspects of release automation solu-
tions, what’s more important is examining a solution in terms of how it helps
organizations increase continuous delivery maturity.

 3 2016 State of DevOps Report: https://puppet.com/resources/white-paper/2016-
state-of-devops-report
 4 The Total Economic Impact™ of CA Release Automation , December 2015: http://
www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-
economic-impact-of-ca-release-automation.pdf

https://puppet.com/resources/white-paper/2016-state-of-devops-report
https://puppet.com/resources/white-paper/2016-state-of-devops-report
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf

Chapter 6 | Deploy96

 No release automation tool will work in isolation. More advanced solutions
will serve as an integration hub, orchestrating many activities across the pipe-
line. At a simple level this could involve application-centric release automation
to configure all the resources needed to support a new build (e.g., allocating
server and storage capacity and ensuring an appropriate platform is in place
to receive the build).

 Beyond addressing immediate operational requirements, advanced solutions
will work in concert with many other processes to build a continuous deliv-
ery ecosystem that helps IT achieve the most advanced levels of maturity.
What distinguishes capabilities here isn't just strong integration, but the
flexibility needed to support a more adaptive toolchain - one where new
technologies can be quickly and easily incorporated to strengthen the con-
tinuous delivery model.

 ■ Tip To avoid vendor lock-in, ensure release automation tools provide an open and scalable

platform, integrating easily with any continuous delivery toolchain for end-to-end visibility and

orchestration of releases.

 Figure 6-2 and the section that follows illustrate and describe essential release
automation toolchain integrations needed to optimize continuous delivery.

 Figure 6-2. Release automation: toolchain integration

DevOps for Digital Leaders 97

 1. Requirements Design

 This integration allows agile teams to track multi-application release content
through the software lifecycle and establish critical feedbacks loops for faster
problem resolution and application delivery.

 With a real-time dashboard for managing and monitoring multi-application
release content (user stories, features, and bug fixes) through the release pipe-
line, agile teams gain complete visibility of release progress, more easily recon-
cile dependencies, and can map to business requirements.

 Without this integration, agile teams would have to manually track and report
on business-level user stories, features, or fixes to specific application releases
moving through the pipeline.

 2. Service Virtualization

 This integration automates the launch of virtual services as part of a deploy-
ment to optimize resources and speed testing.

 Here, DevOps practitioners can provision virtual services and execute test
suites across multiple virtual environments directly within a deployment
workflow. By deploying into any testing environment, teams are freed from
constraints (e.g., waiting for physical hardware environments to be built and
made ready for testing). This improves productivity and speeds time-to-value.

 Without this integration the release process could be interrupted. Manual
requests would be needed to provision physical systems and virtualized ser-
vices separate from the automated deployment workflow. This impedes the
flow of value and ties up resources on repetitive and error-prone tasks.

 3. Test Data Management

 This integration automates the generation of accurate test data based on
proper test cases within a release workflow.

 Without this integration, manual requests are needed to generate the proper
test data separate from the automated deployment workflow. Again, this
results in release interrupts, delays, and slower delivery.

 ■ Note Integrating test data management with release automation should be considered a

DevOps automation best practice. Not only does it ensure teams have ready access to accurate

test, it also helps establish compliance (e.g., generating synthetic data to protect customer

information) into the release process itself and avoid the delays associated with lengthy auditing

checks at the end of each cycle.

Chapter 6 | Deploy98

 4. Test Automation

 This integration automatically starts the test case process and ties the results
back into the release to determine and confirm readiness for promotion.

 Here the test case process would be automatically initiated with the results
linked back to the release. This is essential in order to determine go/no for
automated promotion—enabling faster, higher quality deployments.

 Without this integration it would be necessary to manually determine if the
application has sufficiently passed a testing stage in order to move forward to
the next stage and then manually promote the application. Again, this is time
consuming.

 5. Performance Monitoring

 This integration establishes monitoring earlier in the software lifecycle in
order to feedback critical information needed to improve quality.

 Release automation can coordinate the installation and activation of moni-
toring in pre-production. The technique of "shift left" monitoring (discussed
in Chapter 7) enables teams to see the performance impact of releases and
compare it against production baselines. This provides development with
earlier warning on code-related performance issues and operations earlier
guidance on service-level requirements.

 6. Existing Toolchain Investments

 A fully integrated continuous delivery toolchain solution will be open
and scalable, coordinating the application of any existing products within
standard and reusable release processes. Some important integrations
include:

• Continuous integration —Automatically kick off an applica-
tion deployment upon the immediate completion of a
software build in Jenkins.

• Configuration management —Combine release automa-
tion with solutions like Chef and Puppet to solve the
problem of attempting a deployment when the target
environment is not in a good known state. Integration
here can be used to enforce specific environment con-
figurations prior to deployment and manage configura-
tion drift.

• Cloud provisioning —Enable users to build workflows that
provision, configure, and tear down cloud environments
within a deployment workflow.

http://dx.doi.org/10.1007/978-1-4842-1842-6_7

DevOps for Digital Leaders 99

 Release Automation: Capability Checklist
 With release automation playing such a central role in integrating tools and
processes across the toolchain, solutions in this category should at a minimum
deliver a deployment engine capable of supporting:

• Artifact management —The ability to deploy many differ-
ent components and configurations of applications on
physical, virtual, and public or private clouds.

• Configurable deployment options — A powerful, visual work-
flow engine to easily create standard, reusable deploy-
ment processes to promote apps from one environment
to the next.

• Reusable deployment best practices — Shared components,
allowing teams to leverage and reuse deployment logic
across different projects and applications.

• Orchestration of preferred tools — As discussed, solutions
should leverage existing tool and technology investments
to automate deployments by using out-of-box action
packs or through a software development kit.

• Deployment remediation and auditing — Using a visual
dashboard teams can track and record configurations,
artifacts, and release progress for improvement and
auditing.

 To develop, plan, manage, and optimize the continuous delivery pipeline,
release automation should also scale to helping teams:

• Design a shared pipeline — Orchestrate manual and auto-
mated tasks within the continuous delivery pipeline.

• Execute many complex releases — Run through all the
release phases—development to production for multi-
app, multi-team releases. Iterate and improve failed
content.

• Plan and manage the timeline — Schedule and manage apps
through multiple phases using a visual calendar. Provide
immediate notification of conflicts and maintenance
windows.

• Improve collaboration — Assign owners to tasks and use an
activity feed to share comments.

Chapter 6 | Deploy100

• Manage and track content — Track features as they pro-
ceed to production. Provide full insight when prioritizing
and ensure the business implications of delays are clear.

• Optimize releases —Detect problems in real-time, rec-
ognize bottlenecks, and improve processes and team
activities.

 As maturity increases, release automation should cater to more advanced
requirements. This may include:

 Dependency Management
 When building multi-component/multi-application systems, there will be com-
plex dependencies between applications or different versions of an application.
This may include a mix of release, content, application, and application version
level dependencies. The knowledge of which application version depends on
which is critical and often only known to a small number of experts within the
department. Systems should be able to establish the definition of these depen-
dencies with automatic alerts when dependency conditions are not met.

 Pipeline Visibility with Notifications
 Systems should provide a clear view of the release pipeline, including all phases
and all tasks within each phase. Each phase should show list of tasks, the order
of their execution, and whether it is to be run sequentially or in parallel. To
support continuous delivery, each release should trigger a new build and pro-
mote this build through the pipeline, from the test phase and all the way to
production. Automation should reiterate phases until all tasks pass predefined
criteria. If something goes wrong with a release, delays and idle time should be
reduced through automated notifications.

 Flexible Approval Processes
 For sensitive phases such as production deployment, full governance may be
required. To support these cases, systems should prevent mistakes by allow-
ing only the permitted users to approve the execution of these phases.

 Recommendations and Action Plan
 To attain the continuous delivery best practices described in this chapter,
organizations need to ensure they apply due diligence when adopting an auto-
mated approach.

DevOps for Digital Leaders 101

 As suggested, the best way to start is by assessing processes, culture, and tools
currently in use. This way a clearer picture emerges of where businesses are
today in comparison to where they need to be to support agreed goals and
objectives.

 At the start of its journey, City Index used manual processes to deploy appli-
cation code from development to production. Value chain analysis showed
that moving code through development environments to quality assurance,
then pre-production before finally going live, made up 50 percent of the deliv-
ery effort. 5

 ■ Tip When assessing capabilities, don't limit analysis to one element (e.g., test lab provisioning

or configuration management). Take a system-level approach to understanding the flow of value

and inhibitor across every stage—involving people, processes, and technology.

 Demonstrate Business Benefits and ROI
 Stakeholders, influencers, and decision makers need to understand the under-
lying business benefits of adopting release automation tools to support con-
tinuous delivery.

 Two key metric categories that are used to indicate IT performance and can
be useful in supporting a case include the speed or throughput with which
applications are delivered and the quality or stability of the releases.

 ■ Tip Seek out real-world customer examples from companies that have achieved significant

improvements in both release throughput and quality. ING is one such example. They increased

release frequency to over 12,000 a month, achieving faster time-to-market with less than six

weeks cycle time, but with a greater than 50 percent reduction in incidents. 6

 Any solution must also demonstrate positive economic impact to the depart-
ment and business—both short term and long term. To support this, CA
Technologies commissioned Forrester Consulting to conduct a Total Economic
Impact™ (TEI) study and examine the potential return on investment (ROI)
that enterprises may realize by implementing CA Release Automation. 7

 5 Full story: http://www.ca.com/content/dam/ca/us/files/case-studies/city-
index-bets-on-ca-release-automation-for-it-operations.PDF
 6 http://www.slideshare.net/CAinc/case-study-ing-builds-highly-available-
continuous-delivery-pipeline-with-microservices-and-containers
 7 http://www.ca.com/au/collateral/industry-analyst-report/the-total-
economic-impact-of-ca-release-automation.html

http://www.ca.com/content/dam/ca/us/files/case-studies/city-index-bets-on-ca-release-automation-for-it-operations.PDF
http://www.ca.com/content/dam/ca/us/files/case-studies/city-index-bets-on-ca-release-automation-for-it-operations.PDF
http://www.slideshare.net/CAinc/case-study-ing-builds-highly-available-continuous-delivery-pipeline-with-microservices-and-containers
http://www.slideshare.net/CAinc/case-study-ing-builds-highly-available-continuous-delivery-pipeline-with-microservices-and-containers
http://www.ca.com/au/collateral/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.html
http://www.ca.com/au/collateral/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.html

Chapter 6 | Deploy102

 To better understand the benefits, costs, and risks associated with an imple-
mentation, Forrester interviewed five organizations that had implemented
this solution in their enterprise. Taken as a whole, this composite company
reported a 389 percent return on investment, $8.44 million net present
value, with a 2.8-month payback. The study also illustrated that the com-
posite organization’s configuration management and testing team saved time
and effort on deployments, with savings of six FTEs quantified at $1.22 mil-
lion over three years.

 ■ Note To help determine business benefits and ROI, seek out tools that calculate the full

economic impact of release automation. Comprehensive tools provide total benefit analysis,

assessing metrics such as increased staff productivity, reduced release errors, improved time-to-

value, and reduced auditing and compliance costs.

 Execute Tactically, Grow Strategically
 Starting small is okay: It’s not in anyone’s interests to embark on a lengthy
company-wide committee to investigate introducing release automation. It’s
often easier to showcase business value through a pilot.

 With this is mind, consider selecting a suitable project to act as your pilot.
Many departments start small with a low-risk application that is important but
not business critical. The aim is to start a groundswell of support, gather com-
pelling metrics, and then apply lessons learned across larger teams and proj-
ects. The Western Union Shared-Service Enterprise IT Operations team took
a grass roots approach to DevOps adoption, starting small and measurable.
The team used release automation tools to release software into production
and then used this as a lever to open the door for broader conversations with
its development partners. 8

 Summary
 In this chapter, we discussed the automated methods needed to advance con-
tinuous delivery maturity—taking teams from manual, scripted processes to
more automated, standardized, efficient and agile methods, all while continu-
ously improving both the quality of releases and the applications they deliver.

 8 Presentation - https://www.youtube.com/watch?v=JW2eukJuOqw

https://www.youtube.com/watch?v=JW2eukJuOqw

DevOps for Digital Leaders 103

 We also described how as the lynchpin in a continuous delivery ecosystem,
release automation solutions must be capable of orchestrating many pro-
cesses and tools. The ultimate goal is complete continuous delivery optimi-
zation across the enterprise and zero-touch deployments, from planning to
production.

 In the next chapter, we'll examine the DevOps strategies needed to build
more agile operations—strategies that extend beyond basic monitoring of
applications and infrastructure toward optimizing the all-important customer
experience.

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_7

 Manage
 Agile Operations: Powering the Modern Software

Factory

 In traditional enterprise IT, developers code and operations manage what
comes “over the wall” to production. While DevOps regards this as the ulti-
mate divisive anti-pattern, this practice has still been conducted for decades—
but why?

 The model generally persists because of the nature of customer engagement.
Applications have been generally designed “inside-out,” with customer inter-
action through a single channel. Even if the channel is digitized, the focus is on
improving business efficiencies, with customer benefits only considered as an
afterthought. For IT operations, supporting this model has been difficult but
manageable.

 But all this is radically changing. Now businesses understand that customer
needs “outside” their organization must be brought “inside” and supported
via omnichannel engagement. Omnichannel is all about continuity of experi-
ence, regardless of where, when, and how a customer interacts with a business.

 From a commercial perspective, omnichannel provides an opportunity to
enhance the all-important customer experience via new digital touch points;
however, this increases IT operations complexity, with teams now faced with
managing increased volumes of rapidly changing software services, delivered
over modern and legacy applications and infrastructure.

 C H A P T E R

7

Chapter 7 | Manage106

 With companies digitally “upshifting” from business efficiency to business
model transformation, the value proposition of IT operations must change—
from being good at managing the technology status quo, to becoming more
 agile and integral to driving successful business outcomes.

 This notion of an agile operation is highly synergistic with DevOps since it
involves teams working collaboratively to establish a high-quality customer
experience across the software lifecycle. Rather than wait until production
and retrofit performance, an agile operations team works closely with devel-
opment using new monitoring approaches to “bake” or craft quality into appli-
cations—as they’re engineered, tested, and released.

 Before examining new challenges and agile operations monitoring strategies,
let’s examine a case study where DevOps style practices have been used to
great effect.

 Case Study: ANZ Bank
 Today, the only source of competition in the banking world is an obsession
with serving and delighting customers. This is something Melbourne, Australia-
based ANZ Bank had in mind recently when it launched a new application
performance management (APM) program with the hopes of extending it
across the entire IT infrastructure, which includes four data centers, main-
frames, and more than 10,000 servers. 1

 “The primary goal of all my teams is 100 percent availability of services for our
customers. It’s simple as that,” explains Adam Cartwright, head of IT Security
and Operations at ANZ Bank.

 “That means whatever channel it happens to be —whether it’s a corporation
doing a payroll transaction or a private user transferring money using Internet
banking—it’s got to be up. It’s got to be seamless. It’s got to perform to their
expectations. That is the primary mission of operations within technology.”

 Unfortunately, the complexity of modern distributed applications means that
this doesn’t happen all the time, says Cartwright. Applications and systems go
down, adversely impacting end users. In 2012, it became apparent that infra-
structure monitoring alone—which focused on platform and event monitor-
ing at the infrastructure level—was not enough to give ANZ Bank the insight
it needed to fix and prevent incidents within the organization.

 “What you really need to do is to understand the transaction flow within the
application context you’re going to identify the root cause, or if you’re going
to get early signaling of potential problems before a customer actually has [an
incident],” he explains.

 1 Full story: http://www.ca.com/us/rewrite/articles/management-cloud/customer-
obsessed.html

http://www.ca.com/us/rewrite/articles/management-cloud/customer-obsessed.html
http://www.ca.com/us/rewrite/articles/management-cloud/customer-obsessed.html

DevOps for Digital Leaders 107

 For example, the bank has a distributed payment application that it used to
transact billions of dollars for its highest value customers. The application
comprises more than 120 distributed servers and 60 separate Java applica-
tions. Whenever there was an issue with that application, it was nearly impos-
sible to determine the root cause of the stability issues. The worst part was
that many times ANZ Bank IT didn’t realize there was a problem until its
customers notified them about the issue.

 These challenges led to many of the goals of ANZ Bank’s Application
Performance Management (APM). First and foremost, IT wanted to reduce the
number of incidents caused by application releases. This would increase the
quality and confidence of application deployment or changes while improving
the overall lifecycle of new ANZ applications.

 In addition, Cartwright wanted a way to perform deep dives into the applica-
tion layers to obtain code-level visibility to measure performance and avail-
ability. He also wanted to measure and analyze transactions as they moved
across the distributed and highly diverse ANZ Bank infrastructure technolo-
gies. These efforts have helped the bank minimize customer downtime.

 Using APM, IT is now proactively alerted when there’s an issue before it
affects service. Since APM allows the company not only to look at transac-
tions flowing through an application, but also to identify the business user
behavior attached to those transactions, outages can be found more quickly,
and applications can be redesigned so outages don’t repeat themselves.

 “Getting that insight in production is fantastic, but what is perhaps more bril-
liant is getting that insight in the development-and-test environment ,” he says. “We
have been able to show that by putting APM into development and test—mak-
ing it part of the process in those areas—you can stop defects from getting
into production. And that’s probably the most surprising thing to people new
to APM, but the most critical thing from a production support point of view.”

 Indeed, says Cartwright, this is one of the more astounding benefits of APM.
For example, one project team was able to prevent 10 high-severity incidents
from happening, saving more than a dozen hours of investigations. Another
project team reduced recovery time from more than four hours to less than
30 minutes with no impact to service. “While it’s good to have APM and to
use it to diagnose problems once they’ve occurred in production, you’ve got
a customer that has been affected,” Cartwright explains. “It’s much better to
stop that customer effect from occurring in the first place by not letting that
sort of design issue propagate into production under transition.”

 One of ANZ Bank’s first projects in the test–and-development realm was a
payments application that caused serious production issues. The bank had five
or six major releases each year, and every time a new version went live there
was “a raft” of high-severity incidents. “No matter what we did with testing,
reviewing, traditional sorts of approaches, or performance and volume testing,

Chapter 7 | Manage108

we always managed to end up in a situation where we had a release go live and
we’d have problems in production,” says Cartwright.

 Using APM, ANZ Bank eliminated between 10 and 15 high-severity incidents,
which often stretched out three or four weeks following a release. “Now,
we’re down to one or two or, in some cases, zero [incidents],” says Cartwright.
IT employees are thrilled with the change.

 “Since APM has been in, we have been able to pinpoint the exact impacted servers
and restart these without impacting business and payments processing,” explains
Joseph Rocco, Support Transition Analyst at ANZ. “Before APM, the LMS [Limits
Management System] recovery was four-plus hours. Post APM, it has been around
30 minutes total to restart impacted servers with no outages.”

 This is an example of the fact that, while ANZ’s main focus was on customer
satisfaction, a positive side effect of reducing incidents is the boost it gave the
IT organization as a whole. “If you can stop having incidents, you track capac-
ity and headcount within the organization to do other things, more proactive
things,” Rocco says. “APM essentially means your organization is going to con-
tinue to grow as your system footprint grows and the complexity grows.” IT
employees are freed up to be proactive rather than reactive.

 Following on from this success, ANZ extended its shift-left approach to more than
20 applications. As a result, it has code-level visibility of performance and avail-
ability issues, which not only stops defects from getting into production but also
increases confidence in application development and deployment at the bank.

 Both development and operations teams undertake performance and load
testing and correlate their data. As a result, pre-production efficiency has
increased with a 60 percent reduction in time spent on solving software prob-
lems, which equates to savings of AU $300,000. 2

 More Change, More Complexity
 Progressive organizations like the ANZ Bank understand how customers
expect rapid software iterations of new functionality together with high lev-
els of performance. This fact was illustrated in an Enterprise Management
Associates (EMA) report, which indicated that two-thirds of organizations
who have embraced continuous delivery release code weekly or even more
frequently. 3 But this is not without its problems, with the EMA report also sug-
gesting that development now spends as much time supporting production as
it spends writing new code, while operations spends more time on application
support than on any other single task.

 2 https://www.brighttalk.com/webcast/7819/134027
 3 “Omnichannel, Microservices, and Modern Apps,” January 2016: http://www.ca.com/
content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-
modern-applications.pdf

https://www.brighttalk.com/webcast/7819/134027
http://www.ca.com/content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-modern-applications.pdf
http://www.ca.com/content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-modern-applications.pdf
http://www.ca.com/content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-modern-applications.pdf

DevOps for Digital Leaders 109

 This support now extends to managing modern microservice style architec-
tures. Designed to be deployed as discrete elements (or services) performing
a specific set of tasks and running as its own process, microservices break
down specific functions into small components connected via APIs.

 While this approach potentially allows services to be updated more regularly
without impacting other elements supporting a business process, there are
major operational challenges. Not the least:

• Increased diversity —With microservices, developers can
code in multiple languages and work with databases best
suited for their service. For operations, this means main-
taining performance and availability over unfamiliar tech-
nologies like Node.js and MongoDB.

 ■ Tip Always remember that with modern digital systems applications supported by

microservices and newer technologies, application performance management solutions must be

more resilient and scalable than whatever they are monitoring!

• Massive complexity —One monolithic application can
become thousands of microservices. Unlike monoliths,
microservices make visualizing application topologies and
transactional flow using traditional tools extremely chal-
lenging. Add the prospect of potentially running multiple
service versions in parallel and monitoring complexity
increases exponentially.

 Much of the microservice complexity lies in the rela-
tionship and API-centric communication between
services. With distributed systems like these, teams
must consider a whole range of new issues, including
network latency, asynchronous messaging, and load
balancing, not to mention end-to-end performance
issues when microservices connect with back-end
applications.

• Increased noise —With mobile apps, microservices, and
containerized environments, the volume of alarms and
alerts can grow significantly. Trying to find filter out noise
and find the root cause of problems using traditional
rules-based approaches becomes much more difficult.

Chapter 7 | Manage110

 ■ Tip Consider periodically assigning developers to review the alerts and log messages their

code is producing. This could be a useful way of identifying where refactoring work or improving

application supportability is required.

• Ephemeral nature —With the pace of change necessitat-
ing far shorter application lifespans, triage teams no lon-
ger have the luxury of capturing and analyzing historical
data using a plethora of tools. Teams require methods
to better understand real-time performance across mod-
ern architectures (including containers), which in more
dynamic environments might be changing in a matter of
minutes, even seconds.

 New IT Operations Imperatives
 IT operations as a discipline will no longer be judged on how effective it is
at fixing application problems, but rather on the ability to improve business
outcomes—detecting and fixing issues, yes, but working collaboratively with
other teams across the software factory to establish quality.

 What's admirable in the case of ANZ is how managing to business outcomes
has become an established part of the IT operations mantra. True, the team
is still responsible for maintaining stability and resilience, but by establishing
performance monitoring in areas beyond their traditional control, quality and
confidence have increased substantially.

 Rather than reactive break-fix approaches to monitoring, a DevOps focused
operations function will leverage advanced tools to proactively ensure a qual-
ity customer experience before a system reaches production. In this sense,
practitioners will become uber sysadmin craftsmen and as agile as their
development colleagues. And with developers increasingly empowered to
make operational decisions, a move toward the agile operations approach will
become more important.

 So what new skills will agile operations teams need to acquire? There are a
few important ones to consider, covered in the following sections.

 Proactive Engagement
 The IT operations landscape changing is dramatically with many advances
in technology, but not necessarily changes in values or thinking. With the
democratization of operational functions, a good agile operations focused

DevOps for Digital Leaders 111

practitioner will be one that strives to intimately understand the behavior
of applications, nurture production systems, and feedback information and
knowledge. To this end, agile operations craftsmanship will be less about pull-
ing out router cables and console watching and more about analyzing app
behavior and the customer experience to drive improvements.

 Designing for Failure
 The traditional approach of measuring operational effectiveness in terms of
preventing failure doesn’t work anymore. With cloud applications, there are
many moving parts, in terms of technology and process. There will be mobile
apps and APIs supporting new digital channels, but also back-end data and
systems. In these environments, failures are inevitable, so the objective should
be to design for them—containing problems, but still keeping the business
running.

 Accepting this reality, agile operations will work closely with development to
mature the software engineering and monitoring practices needed to opti-
mize modern cloud-based systems—such as, for example, establishing infra-
structure monitoring with every release or exposing performance diagnostics
with every application build.

 ■ Tip Make it a rule rather than the exception to establish infrastructure and performance

monitoring in every environment—right from the moment something is provisioned or placed in

maintenance mode.

 Moving Beyond Resilience
 Like the mythical Phoenix, modern cloud systems and microservices should
be designed to bounce back from every situation. And they must, because
when a business uses these approaches to engage customers at scale and deal
with unknown demand, there’ll be much more complexity—at the very least
ensuring hundreds (perhaps thousands) of services continue to be available
and performant.

 Throw in complex architectural issues like asynchronous messaging and API
latency and there’s a whole new world of pain. It’s analogous to cutting a head
off the mythical Hydra. Just when you’ve addressed one problem, two more
grow in its place. This is why resilience doesn’t go far enough.

 When considering new digital systems-of-engagement, applications can’t
only be resilient, they too have to be Hydra-like. Rather than fixing problems,
agile operations methods work to improve applications both technically

Chapter 7 | Manage112

and commercially after every significant event (positive or negative). This is
especially important for mobile apps and why experience-based analytics is
becoming increasingly important.

 Making Support a Top Design Issue
 Rather than working as downstream production traffic cops, agile operations
will engage upstream with developers in an advisory capacity. Of course this
requires development to be fully involved; having the desire to learn from IT
operations in order to design and build systems that are much easier to sup-
port once in production.

 But taking the time to learn is challenging if operations provides no useful
information or the tools used only address monitoring from one perspective.
It'll be difficult too, if in the rush to meet project level goals, development
teams select their own point tools and methods at the expense of overall
system-level resilience and performance.

 Combatting these issues requires ending the “toe-to-toe” battles with devel-
opment at various checkpoints across the software lifecycle (which never end
well). It involves demonstrating how the knowledge and expertise everyone
has acquired over many years not only helps improve application supportabil-
ity, but also makes peoples jobs easier and more rewarding. Some examples
include:

• In a mobile app scenario, presenting live usage crash ana-
lytics that developers can use to identify where functional
improvements may be needed.

• Sharing APM toolsets that enable developers to review
issues from their perspective. Serving up information in
their terms, about their world, with their code.

 ■ Tip Consider organizing joint dev and ops workshops where teams openly discuss and share

the “cool” things they’ve learned over many years. This includes operations sharing information

about improving resilience and development explaining the methods used to release software

updates in small batches.

• Openly discussing how older style alert and static base-
lining make less sense in monitoring modern dynamic
environments and only increases the support burden.

DevOps for Digital Leaders 113

• Jointly conduct triage scenarios, simulating what’s really
involved when attempting to fix application issues at
3:00am (clinically review tools to determine whether any
of the “noise” actually warrants getting support staff out
of bed in the small hours)!

 ■ Tip Use workshops and tools to: 1) help developers understand the “on-call” support

implications of their designs, and 2) help operations understand what information developers need

to make performance improvements.

 Active Monitoring
 Teams need to embrace active monitoring methods to build an understanding
about issues before they affect customers. Part of this involves finding better
ways to remove misleading alarms and false-positives.

 Traditionally, monitoring solutions have dealt with false-positive alerts using
performance baselines. Although this has helped, these approaches typically
look at only one part of the issue: severity. A different way to look at the issue
is to analyze both severity and duration . For example, a minor issue occurring
over a long period of time could eventually escalate into a larger issue that
teams need to investigate. Alternatively, a medium issue that occurs some of
the time should raise an alarm because it could become a larger problem very
quickly.

 ■ Tip Once techniques to remove irrelevant noise and alerts have been applied, look for ways

to combine active alerting with methods to capture more detailed information. For example,

automatically initiating a diagnostic transaction trace.

 Toward Agile Operations
 The 2015 Freeform Dynamics report, produced in association with CA
Technologies, indicated that with DevOps, 63 percent and 61 percent of
advanced adopters, respectively, were better able to help the business act
swiftly on digital opportunities and attack and defend more quickly—with 77
percent and 72 percent also indicating improvements in achieving customer
acquisition and retention goals. 4

 4 https://www.ca.com/us/rewrite/articles/devops/assembling-the-devops-
jigsaw.register.html

https://www.ca.com/us/rewrite/articles/devops/assembling-the-devops-jigsaw.register.html
https://www.ca.com/us/rewrite/articles/devops/assembling-the-devops-jigsaw.register.html

Chapter 7 | Manage114

 This suggests organizations can move fast without sacrificing high quality.

 Achieving this requires IT operations adopting many practices and processes
familiar to their agile development colleagues. Of course, this still requires
monitoring the performance of production applications, but it also means
ensuring information gained is fed back and incorporated into agile develop-
ment processes (e.g., agile sprints). See Figure 7-1 . But, and as we’ve described,
IT operations must ensure that the information being shared with develop-
ment is of higher value than that provided through traditional system alerting.

 From a development perspective there are many new tools and techniques
that support shifting-left phases so teams can work in parallel to meet the
goals of continuous delivery. For example, and as described in Chapter 5 ,
by simulating dependent systems, service virtualization solutions help teams
remove constraints, thereby providing teams immediate and realistic test
environments.

 IT operations has to a lesser extent been slower adopting this approach. This
is often due to keeping watch over a myriad of diagnostic tools—meaning less
time is spent delivering information that’s actually useful to their colleagues.

 But failing to embrace an agile operations shift-left approaches can lead to
cost increases and missed business opportunities. For example, hurriedly pur-
chasing additional capacity due to unexpected performance problems, or hir-
ing more contractors because of increased staff burnout and turnover after
excessive after hours support.

Adopt agile and lean processes to deliver a continuous stream of customer value

Daily
Reviews

Backlog

Sprint
Backlog

PLAN

Customer
Value

UPDATED
PLANFeedback

MONITOR
& ANALYZE

Customer
Interaction

Sprint
BacklogIn Production

 Figure 7-1. Agile development and operations

http://dx.doi.org/10.1007/978-1-4842-1842-6_5

DevOps for Digital Leaders 115

 Shift-Left Monitoring
 Adopting agile operations methods like shift-left can be a daunting prospect
when people feel ill-equipped to cope with any type of change. According to
an Enterprise Management Associates (EMA) report, fewer than 50 percent of
IT professionals are confident that their application management solutions can
adequately meet the monitoring requirements of modern IT environments. 5

 It’s important therefore to resist the urge to add another tool (be that commer-
cial or open source) to a growing arsenal of monitoring tools. This approach
can further increase team fragmentation, as confirmed in an Infrastructure &
Operation Trends Survey, where 80 percent of respondents agreed that dis-
jointed, cross-platform management leads to lost opportunities. 6

 As the survey alludes, this can be suboptimal from a business perspective,
especially when incomplete (or incomprehensible) performance signals result
in bad decisions. For example, snap purchasing servers due to an unexpected
performance condition. This might have addressed the immediate issue, but
the organization has just reduced its profit margins and the real problem still
lurks-somewhere.

 This suggests that monitoring approaches should be conducted from an
“avoidance” perspective. That is, avoid problems by detecting them early and
often, before they can impact the business. Do this with fewer tools or spe-
cialists and cost encumbrances are avoided too. Achieve and demonstrate
repeatedly, and IT operations becomes seen as less of cost-center and more
as a value-generator, adding to the bottom line.

 Continuous High-Quality Feedback

 Enabling a continuous cycle of feedback is fundamental to an agile operations
shift-left approach and the success of a DevOps program. In its simplest form,
feedback from operations should help development toward reducing the vol-
ume of code defects, while feedback from development should guide opera-
tional service-level requirements before an application goes into production.

 That’s easy to say but difficult to achieve in practice. Applications are more
diverse, distributed, and ephemeral, meaning feedback must be faster, richer,
useable, and useful. To support this, modern approaches must clinically remove
noise, distill intelligence, and then (and this is the really important part) put it
in context of the people having the most to benefit from it. This way feedback
is more valuable because it’s actionable.

 5 “Omnichannel, Microservices, and Modern Apps,” January 2016: http://www.ca.com/
content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-
modern-applications.pdf
 6 Settling the Settling the Breadth vs. Depth: http://www.ca.com/content/dam/ca/us/
files/ebook/settling-the-breadth-vs-depth-debate-mfinfrastructure.pdf

http://www.ca.com/content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-modern-applications.pdf
http://www.ca.com/content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-modern-applications.pdf
http://www.ca.com/content/dam/ca/us/files/white-paper/ema-omnichannel-microservices-and-modern-applications.pdf
http://www.ca.com/content/dam/ca/us/files/ebook/settling-the-breadth-vs-depth-debate-mfinfrastructure.pdf
http://www.ca.com/content/dam/ca/us/files/ebook/settling-the-breadth-vs-depth-debate-mfinfrastructure.pdf

Chapter 7 | Manage116

 Take for example a mobile shopping app update with new social network API
that’s going to be released to take advantage of Black Friday. The new API is
potentially a great way to increase revenue, but with demand difficult to pre-
dict, how do developers know that their code will handle back-end latency
and load? We could take the “suck it and see” approach or stack the data
center with more capacity, but with brand reputation on the line, is that a risk
worth taking?

 Alternatively, we could use agile operations thinking—serving up developers’
critical insights into API latency, back-end load issues, end-to-end transac-
tion times, mobile device performance impacts, every time they commit their
code. This way, feedback is provided exactly when they have the most to gain
from it—as they develop. And since it’s placed in context of the business goals
they’re looking to support, it’s immediately actionable. This enables the entire
team to act with more purpose and urgency.

 Scenarios like this play out all the time in the real world, with agile operations
approaches providing the cross-functional glue needed to build a shared under-
standing of both problems and opportunities for improvement. For example,
by using monitoring tools in performance benchmarking, teams can better
address capacity and scalability issues; gaining confidence, new applications
under development can cope with production load. This was a significant ben-
efit that Danish Retailer Dansk Supermarked realized when implementing an
APM solution to monitor development, test, and production environments. 7

 By facilitating the sharing of performance information, agile operations help
teams move beyond making small incremental improvements in operational
efficiency toward becoming a business differentiator. This is evidenced by
a Techvalidate report, which indicated that more than half of organizations
using APM stated it has helped them proactively manage user experience to
create competitive advantage. 8

 Intelligence and Analytics

 As operational functions become fused with development, advanced analytics
and statistical methods will play a key role in serving DevOps practitioners
the essential information needed to drive improvements.

 Rather than attempting to process a mountain of alerts to gain clarity over the
current state of performance, cross-functional teams will newer techniques to
better predict application performance and usage. Armed with these insights,
teams will make smarter and faster decisions, not just in a production context,
but across the software lifecycle (see Figure 7-2).

 7 http://www.ca.com/content/dam/ca/us/files/case-studies/dansk-supermarked-
group-safeguards-online-sales-with-ca-apm.pdf
 8 https://www.techvalidate.com/product-research/ca-application-
performance-management

http://www.ca.com/content/dam/ca/us/files/case-studies/dansk-supermarked-group-safeguards-online-sales-with-ca-apm.pdf
http://www.ca.com/content/dam/ca/us/files/case-studies/dansk-supermarked-group-safeguards-online-sales-with-ca-apm.pdf
https://www.techvalidate.com/product-research/ca-application-performance-management
https://www.techvalidate.com/product-research/ca-application-performance-management

DevOps for Digital Leaders 117

 Some valuable methods include:

• Mobile app analytics crash reports —Help ensure any reli-
ability issues impacting user experience are quickly
resolved. With device and platform specific analytics,
developers can optimize code for uniform performance
across all mobile endpoints.

• Behavioral analytics —By understanding how mobile apps
perform under real-world conditions (e.g., slow wireless
networks), developers can optimize the user experience
(UX) designs.

• Usage and performance analytics —These enable develop-
ers to improve design with every new iteration, ensuring
what they build stays performant as usage and conditions
change.

• Business analytics —These can increase the chances of an
app meeting business targets when it moves into produc-
tion. Analytics can also be used to measure ROI from
different applications to help prioritize future develop-
ment (e.g., revealing how newly developed features and
functions are helping increase customer engagement and
preventing churn).

 With the digital-business landscape shifting continuously, predictive analyt-
ics will be supplemented with prescriptive techniques that can actually guide
practitioners toward finding the best course of action in any given situation.
And with less and less time to conduct protracted root-cause exercises, tech-
niques like these will become essential for agile operations.

Full
Visibility

Meet
KPIs

Scale to
demand

Better
UX

Device
Tuning

Better
reliability

QA/TESTDEV PRODUCTIONPRE-PROD

Customer
Experience

Code | Integrate | Build Functional & UA Testing Performance Testing Deploy to Production
quality

IT OPERATIONS

No usability
insights

No device
specific

feedback
No production
crash analytics

User and
infrastructure

monitoring

No business
metrics

Cloud and
Container Blind

Spots

No real world
performance

data

DEVELOPMENT

Crash
Analytics

Device specific
reporting

Behavioral
Analytics

Real World
Test Models

Business
Analytics

Cloud and
Container

Monitoring

IDE SCM CI TESTCONTAINER CONFIG CLOUD PROVISION

IDEA

quality quality

 Figure 7-2. Agile operations analytics—quality and resilience across the software factory

Chapter 7 | Manage118

 In an APM context, it’s easy to see immediate usefulness for complex tri-
age—prescribing solutions as problems emerge. But as these technologies
mature, they’ll also become more business-centric. Consider for example hav-
ing the ability to predict a missed online sales target due to a slow developing
performance problem and then quickly prescribing necessary changes in both
application (design, function, etc.) and infrastructure to prevent the problem
from occurring.

 Providing business outcome-based capabilities like these will become the ulti-
mate litmus test of successful agile operations and a shift-left strategy.

 Agile Operations Tooling
 To deliver agile operations and shift-left approaches we’ve described, organi-
zations need to ensure they have the right application performance manage-
ment strategies and tooling. Before looking at the tools themselves, and as
illustrated in Figure 7-3 , let’s outline some major considerations:

 Early Warning for Business and Development

 Agile operations tools should provide key insights into the performance of
business transactions before the system goes live. With business traversing
APIs, mobile apps, web infrastructure, and back-end systems-of-record, com-
prehensive views into performance across the entire application and infra-
structure fabric become essential. This enables development teams to quickly
understand infrastructure dependencies, how functional changes impact busi-
ness performance, and where refactoring is needed.

 Figure 7-3. Agile operations and shift-left monitoring—essential strategies and tools

capabilities

DevOps for Digital Leaders 119

 By way of example, let’s consider how integrating APM with continuous inte-
gration tools (e.g., Jenkins) can help developers. By providing APM data dur-
ing a build process, developers can quickly determine the impact their code
will make on performance (the early warning) and then leverage it to enact
improvements. For example:

• Immediately see API usage increases between builds.
 Payback: Avoid increased costs in API pay-per-use
scenarios.

• Identify authentication service overuse in new mobile app
development. Payback: Improve customer experience.

• See how upstream functional changes cause downstream
performance issues. Payback: Determine risks associated
with the build.

 The APM data provided should also be extremely granular (e.g., methods
and transactions) and allow developers to roll back to see the impact of any
code-level or environmental changes on performance. Additionally, by incor-
porating APM with continuous integration pass-fail build tests, high quality is
established early (see Figure 7-4).

 ■ Note Using bi-directional integration, this process also updates APM, allowing operations to

establish a complete performance “system of record” before production.

 In a mobile app context, agile operations tools should incorporate capabilities
that help business and development teams better understand and respond to
customer behaviors during mobile engagement. Here, end-to-end transaction

Check in code with
new functionality

Jenkins builds
and runs tests

Jenkins marks as pass-
fail based on APM
build conditions

Data available though
APM Jenkins plug -in

Performance data
pulled into Jenkins

from APM

Jenkins generates
cross-build dashboards

Attributes include
build status, build

number on ATC

Allows access to APM
data in -context from
Jenkins dashboard

Check in code more frequently -with APM data, Jenkins runs the build and tests it more thoroughly in
pre-production to ensure high -quality releases

 Figure 7-4. APM and Jenkins integrated workflow

Chapter 7 | Manage120

performance monitoring should be supplemented with analytics that reveal
how new functions are driving increased engagement levels, activity, and cus-
tomer retention—data that is critical when aligning development efforts to
business initiatives.

 Early Guidance on Operational Impact

 This involves employing tools that continuously track business transactions
and customer engagement to guide operations on production system require-
ments and KPIs. This requires discussion and shared agreement on what’s
important and why, collaboratively developing a shared set of metrics against
which the system as a whole (comprising application and infrastructure com-
ponents) can be monitored.

 Difficulties may arise when architectural complexity and new emergent appli-
cation behaviors make it difficult to establish accurate baselines against which
application performance can be measured. Too often, best-guess performance
baselining results in intermittent but acceptable performance spikes (caused
by new application functionality) flooding monitoring systems with alerts. In
other cases, longer-lived problems indicative of serious code defects go unno-
ticed because they fall within tolerance levels. To address this, teams should
consider mechanisms that rely less on subjective or best-guess baselining,
preferring instead statistical methods such as differential analysis where pat-
terns of performance are built and monitored using multiple weighted crite-
ria. Then, when thresholds are breached, deeper analysis (such as transaction
tracing) can be initiated to pinpoint the problem and provide immediate and
accurate feedback.

 Prioritize by Business Impact and Customer Experience

 Today’s applications rarely function in isolation. In an online flight booking sys-
tem, the overall customer experience can be delivered by 10 or more discrete
elements delivered across multiple channels—from selecting a seat online and
checking luggage at a kiosk, to making a payment and scanning a boarding pass
with a mobile app.

 The elements supporting this “experience” could be transactional, contex-
tual, or a mixture of both. Applications and infrastructure will be equally rich,
including APIs, mobile apps, wireless networks, sensors, and kiosks, along with
legacy booking and CRM applications. It’s essential therefore that agile opera-
tions tools deliver deep diagnostics across all these technologies, plus the
ability to unify and monitor information at a higher service level. In the case of
a flight booking system, for example, being able to prioritize a seemingly unim-
portant API latency problem because of its significance in supporting a new
revenue generating service (e.g., a car rental booking service from a partner).

DevOps for Digital Leaders 121

 Feedback at Key Moments of Truth

 In all environments, agile operations tools should provide teams fast feedback
on software code effectiveness and problem components. This feedback is most
critical at key points impacting customer experience (moments of truth). By
leveraging live app experience analytics, for example, operations can provide
invaluable information to developers and business analysts about the effective-
ness of new code in improving user engagement, activity, and retention.

 In cloud environments where application resources are invoked according to
demand, cost, time, or other business metrics, feedback may be more difficult.
Often, when performance problems arise the first question asked is “what
changed,” which can lead to finger pointing and conflict. While many tools can
detect changes, they still require lengthy analysis to determine if the change
caused a problem. More modern solutions address this by placing changes in
context of application performance, allowing teams to roll back to a point in
time to determine what changed and the knock-on effect on performance.

 To support these strategies, modern monitoring solutions should deliver the
following capabilities:

• Noise removal —Distill and simplify complex application
topologies into role-based views based on elements such
as application component, location, and business unit.
Using these and other attributes, developers and support
analysts can quickly reorient toward addressing issues
and enacting improvements in context of the task at hand.

• Analytical insights —As discussed, provide all stakehold-
ers actionable information across the software lifecycle.
With app experience analytics, for example, advanced
geo-spatial services allows business analysts to build per-
formance and usage patterns, while developers can use
video app playback to better determine the impact of
newly introduced functionality on customer experience.

• Uninterrupted visibility — Deliver end-to-end transaction
level visibility from the mobile app to the mainframe. This
visibility should be provided in from a customer experi-
ence perspective with full and immediate traceability into
problem areas across the supporting applications and
infrastructure (e.g., network response time and API calls).

• Scale and extensibility —The only way to effectively engage
customers and transact more business at scale is through
mobile and cloud. Monitoring therefore needs to be
equally scalable—future-proofing business by seamlessly
supporting new technologies as they're introduced.

Chapter 7 | Manage122

• Manage to outcomes — Strong consideration should be
given to advanced tools that better determine what cus-
tomer experience improvements (business outcomes)
can be achieved by aggregating technology diagnostics
and optimizing performance (outputs). This is key to
ensuring the actions of cross-functional teams are fully
aligned toward driving business improvement—not man-
aging technology for technology’s sake.

 Summary
 The days of IT operations working in the closed confines of a network opera-
tions center and just keeping the technology “lights” on are numbered.

 As software releases grow in volume, variety, and velocity, agile operations will
emerge as a key DevOps enabler. It’s a collaborative discipline where practi-
tioners work across the software factory to help business achieve the best
outcomes from a high-quality customer experience.

 Practitioners of agile operations will become true DevOps craftsmen; employ-
ing new methods, modern tools, and advanced analytics to deliver superior
application performance without increasing the support burden.

 In the next chapter, we’ll discuss how DevOps can coexist with existing meth-
odologies and best practices. We’ll also examine its impact on other IT func-
tions, including enterprise architecture and security.

 P A R T

III

 Tuning and
Continuous
Improvement

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_8

 Practical DevOps
 Leveraging Existing Reference Sources, Roles,

and Practices

 In enterprise computing, DevOps will never operate in a vacuum. Over many
years businesses have invested, adopted, and adapted many other methodolo-
gies and practices. For DevOps to be successful, this means many practices
and existing roles (beyond development and operations) should be care-
fully reviewed and, if necessary, adjusted to drive improvements across the
DevOps-enabled software factory.

 DevOps and Enterprise Architecture
 For many years, organizations have understood the dangers of technical debt.
That is, the additional overhead arising when badly designed, poorly tested,
and defect-ridden software is accepted for short-term gain. Analogous to
financial debt, too much technical debt and the associated interest can cripple
an organization to a point where they’re constantly putting right previous
wrongs at the expense of delivering new innovations.

 Architectural debt is similar to technical debt and equally problematic. Poor
architectural decisions can severely limit an organization’s ability to move
toward more agile styles of delivery. The result can be lower levels of innova-
tion, slower time to market, or more cost and effort consumed rebuilding appli-
cations. These poor decisions are the consequence of conflicting architectural

 C H A P T E R

8

Chapter 8 | Practical DevOps126

perspectives. On the one hand, scant regard for architecture and unconstrained
development leads to software that is hard to integrate, support, and enhance.
On the other, overly defined architecture is difficult and complex to implement,
leading to delays in software delivery.

 Some DevOps practitioners feel that they don’t need to be guided Enterprise
Architecture (EA). Conversely, many Enterprise Architects believe that rigorous
dictates, methodologies, and practices must be adopted fully by DevOps pro-
grams. In truth, both agile development and DevOps cannot succeed without
EA. However, the scope and application of the discipline must change to acceler-
ate DevOps benefits without burdening the business with additional risk.

 Without Good Architecture IT Builds Software
Slums
 The UK high-rise tower blocks built circa 1950-1980 were heralded as archi-
tectural wonders. Large towers housing the same population as the smaller
pre-war houses they replaced. With large rooms, excellent views, and sur-
rounding open spaces, they were initially lauded as the low-cost future for
urban housing. However, there were many problems.

 Due to cost cutting, substandard materials, demanding deadlines, and rushed
construction practices, these modern-age housing miracles quickly became the
new slums of the day. And by building tower-blocks across the country, town
planners unwittingly replicated bad designs everywhere. The result: undesir-
able housing, elevated crime levels, and urban decay. Even the surrounding
open areas and playgrounds were neglected because no one had ownership
over maintenance or supervised them.

 In many ways, this is analogous to many architectural design calamities made
by IT in the past.

 Built over many decades, rigid monolithic application designs have become
difficult to scale and require costly maintenance. They’re also tough to police
and secure, with vandalism and theft being a constant problem. Add to this
integration issues (IT’s own unsupervised open spaces) and we’re left with sys-
tems that are inadequate to meet the needs of modern digital business. That's
not to say, however, that modern design approaches are the panacea. Web and
microservices introduce new architectural issues, not the least, dependency
management and monitoring complexity.

 Enterprise Architecture Must Adapt to the Times
 DevOps, with its focus on collaboration across the entire service lifecycle, is
now seen as the answer to many of these issues. This is fine in principle, but
without flexible EA, the end result could be IT developing application “slums,”
only more of them at an increased pace.

DevOps for Digital Leaders 127

 With some justification, many DevOps practitioners argue that heavy EA
practices and frameworks haven’t evolved to match the pace of agile. Iterative
style development essentially means an end product very different from the
initial idea, which necessitates a transition from set-in-stone architectures to
a more fluid mix based on continuously evolving decisions. And if architects
can’t adapt, autonomous agile teams with easier access to open source and
cloud-based resources are increasingly empowered to make architectural
calls. But this can be problematic.

 Great developers don’t necessarily make great architects; they’re not hard-
wired that way. Charging down a development path without architectural
guiderails, or tactically making team-based decisions, could address short-
term development requirements but compromise broader program-level
objectives. For example:

• Scalability and performance issues needed to address
the business strategy of tripling the customer base and
increasing satisfaction scores are neglected because
development only concentrates on delivering more
functionality.

• Developers acquire public cloud resources to accelerate
application testing, but don’t consider masking personally
identifiable customer details when moving test data. As a
result, organizations (especially those in heavily regulated
industries) risk compliance breaches and heavy financial
penalties.

• Because of team-based technical bias, a development
group chooses one NoSQL database over the technology
already used by another team. The existing technology
would have met their needs (albeit with compromises),
but their technology bias has significantly increased the
support burden on IT operations.

 It’s important not to lay the blame squarely on development. Architects should
recognize that any misalignment between existing processes (particularly the
rigid ones) and the vision of an increasingly software-driven business will only
further isolate the practice to the eventual detriment of the business.

 New Fluid Guidelines and Principles
 By incorporating the experience of enterprises architects within DevOps
teams, organizations can maintain the pace of software delivery without intro-
ducing chaos. What’s key, however, is to limit architectural over-engineering
and provide development groups a minimum set of EA so as to avoid technical
and architectural debt.

Chapter 8 | Practical DevOps128

 Even in minimal-mode, EA can still help developers quickly identify critical
software design issues. The aim being to guide developers into understanding
what architectural facets make up a successful application, and more impor-
tantly, how new ways of thinking can support more sustainable software
innovation.

 Interestingly, these practices are analogous to those that could be used to
avoid building “housing slums”:

 Avoid substandard or unsupported materials— Development tools will
most likely comprise both commercial and open source software and utilize
both on-premise and cloud-based infrastructure. Teams must ensure applica-
tion supportability becomes a key consideration, especially as more modern
applications comprising multiple components move into production.

 ■ Note Just as the cost of maintaining UK housing tower-blocks reached unsustainable levels,

so too will support burden on the organization when open source software isn’t maintained and

enhanced by the broader software community or lacks commercial backing. Enterprise architects

should also work closely with development to understand where constraints lead to testing

compromises—the “construction shortcuts” syndrome, resulting in compliance and quality issues.

 New technologies shouldn’t rehouse old problems —Enterprise archi-
tects should avoid rigid and inflexible edicts on technology usage. For example,
mandating that all applications must be containerized, even legacy applications.
This could be extremely problematic since the runtime-independent nature of
containerized applications will extend the life of “problems” and provides no
incentive to clear existing technical debt.

 ■ Note As UK high-rise housing tower-blocks degraded and vandalism increased, many local

authorities tried to contain the situation by housing “problem groups” in the same units. Enterprise

architects should avoid the same trap as they adopt technologies such as public cloud services

and containers.

 Monitor and manage sub-contractors —Whatever cloud model is
adopted, abstracting away the infrastructure or application stack frees up
development to focus on coding. But this shouldn’t mean relinquishing vis-
ibility and control over application performance and the end user experience.
To this end, enterprise architects must act as cloud-brokerage advisors. For
example, working to ensure that cloud service providers incorporate open
APIs with their offerings so that monitoring can be seamlessly incorporated
into existing tools.

DevOps for Digital Leaders 129

 Building new digital services with DevOps is only part of the role of EA. The
innovations of today may become legacies of the future, while many new apps
must also integrate with existing systems that have strict compliance and risk
controls. It’s essential therefore that architecture covers both bases, working
in minimal mode to ensure fast construction of quality services, but also apply-
ing standards and governance when needs dictate and systems change.

 Actions to Establish EA in DevOps Programs
 Some important steps needed to ensure EA becomes a sustainable contribu-
tor to a DevOps initiative include:

• Communication —To impress the importance of flexible
architecture practices and standards. For example, API
instrumentation shouldn’t be mandated with rigid rules,
but by carefully outlining how the practice improves soft-
ware quality and supportability. This involves building
closer ties with developers to ensure the right tooling
decisions are being made. Enterprise architects should
always emphasize that their participation isn’t to slow
down one particular team, but to ensure that team deci-
sions (especially tooling) support broader program goals
and objectives.

• Collaboration —In dynamic agile environments, it’s natu-
ral for small teams to only focus on their own project
and not consider the wider business context. Enterprise
architects must apply flexible governance to ensure all
stakeholders are involved in decision making without
the system becoming overly bureaucratic. To this end,
the governance approach must outline the need for big-
picture strategy at an overall application portfolio level
(complete with funding, commitment and risk manage-
ment), together with support at a project level so to
drive better outcomes in a business context. This sup-
port should start at the requirements phase and extend
across the software development lifecycle.

 DevOps and Information Security
 It’s a common misnomer that DevOps only involves closer collaboration
between development and IT operations teams. In actuality, DevOps pro-
grams must also involve other disciplines that have traditionally been engaged
late in the software development lifecycle. This is especially important with
regard to information security.

Chapter 8 | Practical DevOps130

 At first glance it appears that the goals of DevOps and security are at odds.
Whereas DevOps calls for increasing the delivery of high-quality software,
security and compliance seeks careful and deliberate oversight to ensure the
business isn't opening itself up to vulnerabilities. And with a mountain of rules
and regulations to support, it's not surprising that security could easily become
being regarded as another bottleneck in release and deployment processes.

 All teams must accept that security is a key facet of “high-quality” software,
which again can be established without slowing down development. There are
four essential practices to consider:

 Make everyone accountable for security —DevOps impresses the need
shared responsibility and accountability. Therefore, security professionals
should seek to build relationships with dev and ops teams and engage them
as active stakeholders and participants in driving security improvements. As
with enterprise architecture, this doesn't mean continually enforcing rigid
and inflexible policies, but actually working collaboratively to assign security
responsibilities to the team's best positioned to act on them. For example,
during every application security incident, developers responsible for the
actual code implicated should really be the first group called to help address
the problem. These teams will be much more familiar with the software work-
ings, plus the lessons they learn will help harden application security.

 Demonstrate how DevOps improves security and vice versa —As
organizations increasingly embrace DevOps, there'll be many new automated
tools and practices introduced. As with everything new, these elements could
introduce new threats and risk. Rather than see this as a problem, highly col-
laborative teams should work proactively to identify where additional guid-
ance and controls are needed and can be applied without causing friction.

 Take the development of a new mobile application for example. Here security
experts can provide critical guidance on new threat surfaces, API governance
requirements, and vulnerability testing. It’s also important to consider that
many new tools introduced (especially in areas like configuration manage-
ment and release automation) also provide an opportunity for teams to build
and improve security within the continuous delivery pipeline. To this end,
it becomes less about making DevOps more secure and more about using
DevOps (and especially automation) to improve security. This could include:

• Invoking techniques such as static code analysis during
every application build, or providing development teams
with comprehensive and fully automated security testing
services that can be used repeatedly.

• Automatically creating the minimum set test cases with
maximum security test coverage, right from the earliest
stages of software development: the requirements phase.

DevOps for Digital Leaders 131

• Reducing security test cycle preparation time by request-
ing and reserving accurate and compliant data from a test
data repository.

• Generating realistic synthetic test data and incorpo-
rating directly into virtual or emulated services so as
to improve testing quality while avoiding compliance
exposures.

 Shift security “left” —As with the traditional development to opera-
tions code handballing, the tendency has been to engage security very
late in the development process. Too often, security teams are seen as
the bottleneck police, holding up deployment with snap code audits and
lengthy compliance checks. DevOps practices, however, enable security to
be established during parallel development and testing. As code is devel-
oped, automated tests can be automatically invoked to continuously check
and demonstrate compliance controls. This could include separation-of-
duties and privileged user access controls, or masking personally identi-
fiable customer information during cloud-based testing to demonstrate
compliance.

 ■ Note By shifting security controls left into development and continuous delivery, it becomes

easier to demonstrate compliance against a broad range of regulations (e.g., Federal Security

Information Management Act—FISMA and General Data Protection Regulation—GDPR). High

costs and delays resulting from auditors coming late into the process and finding the system isn't

compliant may also be avoided.

 As applications become increasingly complex and threats more pervasive,
highly skilled security specialists will become highly prized and critical
element to the success of any DevOps initiative. Organizations shouldn’t
make the mistake of assuming that developers themselves with a smatter-
ing of web application security experience can take on a full time security
role (or will even want to), or that security staff (more used to maintaining
security in legacy applications that infrequently change) can suddenly think
like an agile developer. Over time, these skills will need to be developed
by leveraging DevOps style collaboration. This could include agile teams
inviting security to participate in user story development, stand up meet-
ings, and retrospectives. For security professionals, it also means gaining
credibility with a more detailed understanding of modern coding prac-
tices, providing faster feedback, and becoming an active voice in all security
related discussions.

Chapter 8 | Practical DevOps132

 Rethinking Security Practices for DevOps
 For many organizations, embedding security professionals into DevOps teams
isn’t practical. There just aren’t enough of them and security operations
may have problems scaling to handle a sudden influx of software changes.
Addressing this requires a radical rethink on how to best apply security prac-
tices. This can involve:

• Using security as a guiderail —Security must take a lead in
developing solutions and policies that all development
teams can adopt. However, if teams gain management
approval to bypass a policy because it slows them down,
or the business unit accepts the trade-off is well worth
the risk, security shouldn’t stand in their way. Rather,
security should measure their security capabilities and
continue to inform teams about the risks of their actions.

• Building closer collaboration with suppliers —With appli-
cations moving to the cloud, organizations must work
closely with software and cloud service providers to
instruct what additional security controls and methods
are needed in order to develop, test, and store informa-
tion, without carrying additional risk. Businesses operating
in different industry verticals will have specific compli-
ance and data protection mandates, meaning providers
must be willing to act in a more enterprise-friendly man-
ner. This involves service providers including customers
in development roadmaps and a willingness to support
enterprise specific security requirements.

• Making security a whole-of-business issue —The role of secu-
rity in DevOps should be to make security everybody’s
issue, not just the responsibility of the highly specialized
security team. One effective way to do this is to develop a
hierarchical security scoring system. If for example a defi-
cient security practice is detected during the provisioning
of a test environment, then the team responsible should
be rated accordingly. That score should also bubble up to
a group or divisional level. In this way, everyone (includ-
ing senior management across business and IT) becomes
more accountable.

• Proactively involving security —While it might not be prac-
tical to embed security specialization into every team,
the security group can establish small teams charged
with continuously testing security across the software

DevOps for Digital Leaders 133

development pipeline. At regular times this team will
focus on particular services (even groups of people) and
use their expertise to hunt out vulnerabilities and log
via established ticketing mechanisms with the appropriate
classification and priority. During these exercises, no one
should be immune from investigation or the activity lim-
ited to static systems. Even if teams are in the middle of
a large important release, any severe problems detected
must be addressed immediately.

 Essential Characteristics of Security-Minded DevOps
 As illustrated in Table 8-1 , a security-minded DevOps program transcends
beyond reacting and fixing security problems to protecting the business as
applications are designed, developed, and tested.

 DevOps and IT Service Management
 While DevOps as a movement is relatively new and many organizations are
in the early stages of adoption, most have heavily invested in more established
methodologies and practices—especially ITIL® 1 . Since its inception in 1994,
ITIL has been positioned as the most complete approach to IT management,
with the exception of project management and enterprise architecture. It’s
not surprising then that upwards of two million people had some form of
ITIL training (from foundational to expert) and that most enterprises have
adopted many of the processes as detailed across the five ITIL volumes (ser-
vice strategy, service design, service transition, service operations, and con-
tinuous improvement). For some, this starts and ends with service operations

 Table 8-1. DevOps and Security: Organizational Mindset

 Customers first Mindset that enables security to be continually tailored

according to customer needs and business outcomes.

 Team alignment Flexible organizational structures that enable security

expertise to be embedded within development, testing, and

operational functions.

 Proactive engagement Constantly assessing the security readiness across the

software development lifecycle by introducing unplanned

security events and threats.

 Continuous investigation Thorough analysis of external attempts to attack a business so

teams can remediate security issues quickly and effectively.

 1 ITIL® is a (registered) trademark of AXELOS Limited. All rights reserved.

Chapter 8 | Practical DevOps134

processes (especially the service desk function together with incident, prob-
lem, and change management problems), while others have embraced a fuller
lifecycle-based approach to adoption.

 DevOps and ITIL
 Despite common misconceptions, ITIL is not specifically opposed to agile and
DevOps thinking. For example, the service strategy volume promotes the
notion of continuous improvement via feedback across the service lifecycle,
while service design mentions agile and iterative design. However, despite the
synergies, the general philosophy behind ITIL is one of rigorous sequential
planning and control via process; opposite of the fast iterative design approach
of agile development. ITIL also suggests that silos will continue to exist (albeit
aligned around 26 processes), whereas the idea of smaller cross-functional
style product teams, fast feedback, managing work in process, and small batch
sizes is not well supported.

 This appears to suggest that ITIL is becoming increasingly irrelevant with the
practices under increased enterprise scrutiny. While this is perhaps true, it’s
important to appreciate where coexistence is practical and the immense value
established ITIL processes can still deliver a DevOps program—especially
core ITIL processes (e.g., incident and problem management).

 Take problem management for example. This can provide considerable insight
into the behavior and performance of a particular application, which can
inform developers of needed non-functional improvements. This can also help
teams avoid getting information (often conflicting) from a variety of sources.
Additionally, a standard incident/problem ticketing method across develop-
ment and operations may help improve teamwork and collaboration.

 Overcoming Resistance
 The biggest problem with respect to DevOps adoption is the resistance to
change by established ITSM practitioners within the organization. Very often
many roles are aligned around ITIL processes (change managers, problem
managers, etc.), so it’s natural people may resist DevOps if they feel their
careers are threatened. To this end, DevOps and ITSM leaders must actively
work to better understand how existing roles and practices can be enabler of
successful DevOps capabilities and where refinements are needed. This could
include:

 Developing a better understanding of change —The adoption of ITIL has
led many organizations to create the often-maligned Change Advisory Boards
(CABs). Meeting infrequently, these groups have the unenvious task of approving
production changes—essentially becoming the control point for delivery.

DevOps for Digital Leaders 135

 DevOps’ approach to change is radically different. With DevOps, all change is
encouraged unless it introduces greater risk and the increased probability of
adverse customer and business impact. To this end, change isn’t policed at the
end of the cycle, but managed at the start of development. This is supported
by many automated methods, including:

• Automatically establishing tests early, even when require-
ments are being established

• Maintaining consistent environmental configurations
across development, test, and production

• Automated construction and invocation of testing during
development, application builds, promotion, etc.

• Visibility and automation of complete release workflows

 In dynamic agile environment, the rigor associated with CAB style change
management may be too inflexible. It’s important that ITIL roles readjust pro-
cesses to accommodate the more continuous introduction of change. This
could involve CAB leadership determining which DevOps-related changes do
not require the normal process rigor and may bypass the traditional controls.

 Integrating existing ITIL processes with DevOps —DevOps practitio-
ners should collaborate with ITIL process owners to determine where inte-
gration with existing systems can drive improvements. Even if changes have
to go through an approval process (e.g., for systems subject to compliance
controls), this can be streamlined by integrating release automation with the
change request process (normally maintained in a help desk system). Rather
than rely on manually entering a change request separately, this activity would
be incorporated in the actual release automation workflow itself, together
with all necessary approval requests and escalations. In another example,
security managers could work closely with DevOps practitioners, establishing
technologies such as privileged access management to better accommodate
the needs of developers without compromising strict compliance controls.

 Participating in DevOps discussions —With many years of experience, ITIL
practitioners can provide DevOps practitioners essential knowledge needed to
drive improvements. An experienced IT operations manager could, for example,
demonstrate how application performance management tools can be used in
pre-production to identify any performance related problems undetected dur-
ing earlier stages of testing. On the flip-side, ITIL process owners may ben-
efit from newer tools introduced by agile and DevOps practitioners. Examples
include configuration management and release automation solutions.

 Beyond discussions and as illustrated in Table 8-2 , there are many other
practices that teams can adopt to reinforce the value of more collaborative
behaviors.

Chapter 8 | Practical DevOps136

 DevOps and Lean Startup
 While DevOps will need to coexist with and leverage traditional IT prac-
tices such as ITIL, there may be occasions when DevOps practices are very
appropriate to help drive the adoption and success of newer business-driven
methodologies. One such example is Lean Startup, a method for developing
businesses and accelerating product development through a combination of
hypothesis-driven experimentation, iterative product releases, and validated
learning.

 Originally proposed in 2008 by Eric Ries 2 , the Lean Startup promise is to help
businesses iteratively develop products to meet customer needs, while reduc-
ing market risks and avoiding heavy project funding and expensive product
launches and failures.

 DevOps practices have many synergies with Lean Startup, including:

• Customer focus —Lean Startup places great emphasis
on validated learning, which is basically the process for
understanding quickly what a customer actually needs
or wants so that useful (and profitable) products can
be developed. Agile and DevOps can help achieve this
through the delivery of smaller units of work or itera-
tions, after which results are validated.

 Table 8-2. Example Behavioral Practices for DevOps and ITIL Teams

 Practice Example

 Celebrate successes Service managers present the business outcomes from a

successful release together with lessons learned.

 Improvement indicators Service management team attends daily stand-up meetings and

presents how data sharing has improved the supportability of a

new application.

 Recognition and rewards At a joint weekly meeting, DevOps and service management

teams jointly recognize individuals who have demonstrated

strong collaboration and a shared commitment to driving

improvements.

 Reinforcing vision At a weekly meeting, IT operations leadership reinforces the

vision and goals of the DevOps program.

 Satisfaction snapshots Process owners are regularly engaged to assess the current

level of engagement and support for a DevOps program.

 2 “ The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation To Create
Radically Successful Businesses ,” Eric Ries, September 2011

http://books.google.com/books?id=tvfyz-4JILwC
http://books.google.com/books?id=tvfyz-4JILwC

DevOps for Digital Leaders 137

• Fast feedback —Lean Startup success depends heavily on
continuous customer feedback during product develop-
ment. This is to ensure that business don’t invest unneces-
sary time and money developing features that customers
don’t want. DevOps supports this through two practices.
First, by teams aligning activities to business outcomes and
developing actionable metrics (discussed in Chapter 3),
and secondly by employing continuous delivery processes
to quickly release and test prototypes, experiments, etc.

• Team collaboration —With Lean Startup promoting the
continuous running of experiments and validation, it is
critical that all cross-functional teams operate in unison.
In such fast-paced environments, any form of waste like
long cycle times and delays hampers validated learning
and inhibits the flow of value. It's why DevOps prac-
titioners supporting a Lean Startup model place great
emphasis on reducing all elements of waste across the
software lifecycle (see Chapter 3).

 Summary
 Being myopically focused of DevOps to such an extent that existing bodies of
knowledge and best practices are shunned or ignored is a recipe for disaster.
That said, organizations must also be ready to adjust existing methods, roles,
and practices. As this chapter illustrates, this includes enterprise architecture
and information security.

 In the next chapter, we'll describe important tangible business benefits and
strategies needed to accelerate DevOps ROI.

http://dx.doi.org/10.1007/978-1-4842-1842-6_3
http://dx.doi.org/10.1007/978-1-4842-1842-6_3

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_9

 DevOps and
Real World ROI
 During the 2016 Formula 1 season, it’s not unusual for pit-stops to hover
somewhere around the three-second mark. In rare instances, such as for the
Williams F1 team at the 2016 European Grand Prix, the feat has amazingly
been accomplished in less than two ticks of the clock.

 Wrap your mind around that idea for a moment. It will likely take you as long
to digest the concept, and it certainly took longer to type out this sentence,
than the amount of time required for a 15-20 member pit-crew to pounce on
a stopping race car, lift it off the ground, swap four wheels and tires, and then
drop it down to be sent on its way. Two seconds! 1

 Quality Is Everyone’s Responsibility
 Of course, this larger performance represents a complex chain of lesser
events, mapped out and practiced relentlessly by highly-paid, full-time profes-
sionals—pit-crews whose sole job is to save their teams and drivers precious
seconds that could result in a change in position, and in some cases even a
victory.

 C H A P T E R

9

 1 “Williams Data Shows Baku Pit Stop a New Record,” Motorsport.com, June 22, 2016:
 http://www.motorsport.com/f1/news/williams-data-shows-baku-pit-stop-a-new-
record-790776/

http://www.motorsport.com/f1/news/williams-data-shows-baku-pit-stop-a-new-record-790776/
http://www.motorsport.com/f1/news/williams-data-shows-baku-pit-stop-a-new-record-790776/

Chapter 9 | DevOps and Real World ROI140

 As one crew member pirouettes away with a used tire, another immediately
spins into place and mounts a new wheel on the car’s hub, with a pneumatic
air gun operator barely removing the apparatus as one wheel is removed and
another arrives in its place. This process is carried out in concert simultane-
ously on all four wheels of the car. Suffice it to say, to pull this act off success-
fully, execution must be flawless, every time.

 Consider that over the 70-plus years of F1 history, at least ten individual races
have been decided by less than two-tenths of a second, and many more by a
matter of mere seconds; the impetus to strive toward such lofty speed and
precision quickly comes into focus. 2

 Making a Case for DevOps ROI
 How do these F1 crews perform such a precise ballet? By using teamwork,
communication, and near constant review meant to spur process improve-
ment. Countless hours are spent reviewing pit-stop video looking for even
the smallest opportunities for potential refinement, followed by an endless
cadence of hands-on practice wherein these movements are repeated hun-
dreds of times.

 Meanwhile, revised wheel, hub, and pit-crew equipment designs are intro-
duced in the name of further speeding this process. The drive for perfection
is continuously evolved as part of a cycle that never ends.

 The return-on-investment (ROI) for teams that master this craft is evidenced
not only in race results and unofficial pit lane bragging rights, both of which
carry weight, but more importantly in hard dollars and cents. While races are
often decided by seconds, the difference in prize money between the first
place and tenth place finishers in the 2016 F1 Constructors Championship is
estimated at roughly $150 million. 3

 Pit-stops represent only a small element of the overall competition, but when
it comes down to it, every single aspect of F1 racing is aimed at shaving sec-
onds, and even milliseconds, in the name of victory.

 Inside the modern software factory, workers are engaged in a similar high-
stakes race aimed at addressing an elusive opportunity, which, like a race or
season win in F1, can disappear in the blink of an eye. This is crucible —suc-
ceeding in the applications economy also demands constant review, improve-
ment, and acceleration of velocity.

 2 “Who Won it? 10 of F1’s Closest Finishes,” FOX Sports, September 1, 2014: http://www.
foxsports.com/motor/story/who-won-it-10-of-f1-s-closest-finishes-090114
 3 “Formula 1 Prize Money 2016 (Constructors Championship),” Total Sportek, March 17,
2016: http://www.totalsportek.com/f1/formula-1-prize-money/

http://www.foxsports.com/motor/story/who-won-it-10-of-f1-s-closest-finishes-090114
http://www.foxsports.com/motor/story/who-won-it-10-of-f1-s-closest-finishes-090114
http://www.totalsportek.com/f1/formula-1-prize-money/

DevOps for Digital Leaders 141

 As outlined in the proceeding chapters, it’s widely accepted that in order to
grow and survive in the current business environment, organizations must
embrace digital transformation, thereby advancing their ability to evolve soft-
ware and services to meet changing customer expectations. Beyond the grow-
ing emphasis on this theme by numerous business and technology leaders, and
certainly speculation on the part of technology vendors, hard data has begun
to emerge which serves to cement the requirement for DevOps adoption.

 For instance, in a 2015 study published by CA Technologies and Zogby Analytics,
68 percent of consumers noted that they will completely abandon a particular
brand based on mere seconds of delay in application loading times. 4 Specifically,
respondents indicated an expectation that applications load in six seconds or
less, or else they simply drop the app, and often the related provider. Further,
more than half these respondents indicated that they actually expect applica-
tions loading times of less than three seconds before they run out of patience.

 Based on this reality, the need for broader adoption and advancement of
DevOps culture, process, and tooling to speed and improve applications
delivery is thrown into stark relief. An organization’s ability to wrap its arms
around DevOps has become a key differentiator in competing for end users’
attention and dollars; in contrast, failing to meet changing customer expecta-
tions related to applications quality and performance often means losing out
to more agile competitors.

 In short, improvement of software delivery has become a prerequisite for survival.
Based on that conclusion, beyond the vague notion of advancing general viability,
measurement of DevOps ROI impact is clearly an increasingly critical practice.

 The Challenge of Measuring DevOps Success
 Measuring the impact of a process as far-reaching and transformational as
DevOps within the context of ROI may seem impossible to some observers,
but organizations of all kinds—from practitioners to industry analysts—have
begun to attempt such calculations.

 For starters, creating the necessary framework for such metrics requires
closer consideration of the very reasoning behind DevOps adoption. Loosely,
this rationale is accepted as the need to increase the pace of software devel-
opment and release, all while improving the quality of resulting applications.
Just as importantly, DevOps also brings with it the promise of speeding the
rate of response to emerging performance issues, all while better addressing
changing customer expectations.

 4 “Software: The New Battleground for Brand Loyalty,” CA Technologies and Zogby
Analytics, March 4, 2015: http://rewrite.ca.com/us/articles/application-
economy/research-study-software-the-new-battleground.html

http://rewrite.ca.com/us/articles/application-economy/research-study-software-the-new-battleground.html
http://rewrite.ca.com/us/articles/application-economy/research-study-software-the-new-battleground.html

Chapter 9 | DevOps and Real World ROI142

 At first glance, this would seem a set of processes and concepts easily tied
to straightforward notions of measurement, such as the rate of software
deployments. However, that in itself may be too simple a viewpoint. The real-
ity is that such measurements highlight some of the immediate benefits of
DevOps advancement, while many other intrinsic results are certainly harder
to quantify.

 Consider that some experts, such as DevOps industry pundit and former
research analyst Michael Cote, have posited that attempting to gauge the ROI
of DevOps, in this dualistic sense, is "simultaneously absurd and important". 5

 The reason being, the expert maintains, that there are too many variables
involved in DevOps transformation to make any overarching estimate of
impact a solely believable value.

 Writing for FierceDevOps in 2015, Cote specifically noted that "DevOps is an
immeasurable process with respect to ROI, because its value is nearly impos-
sible to measure independently and precisely."

 That said, Cote relents that while the larger import of DevOps may be dif-
ficult to define in terms of pure ROI, it is possible and practical to measure
the success of specific projects—or products developed using DevOps pro-
cesses—to establish some baseline for related assessment. This is where
calculations such as software deployment rates and so-called mean-time-to-
repair (MTTR)—which measures the ability of organizations to identify and
repair applications issues that arise in production—infer some guidelines for
assessing DevOps returns, if not larger success.

 As noted by industry watcher Christopher Null of TechBeacon in his semi-
nal article, “How to Measure DevOps ROI,” 6 , such measurement of impact
is most practical within the most basic context of DevOps adoption, namely,
saving any amount of time previously spent building, deploying, and maintaining
applications.

 “One of the biggest benefits, if not the biggest benefit, of DevOps is the prom-
ise of speed; DevOps enables more and faster code deployments, which means
a decreased time to market and more opportunities to capture revenue from
customers,” Null observes.

 Using such a framework, one can also begin to tie delivery of mission-critical,
or even revenue-impacting functionality to applications lifecycle improve-
ments garnered via DevOps processes. For these reasons, the most practical
forms of DevOps ROI measurement available today do in fact revolve around
factors such as software release cycles, MTTR, and applications code change

 5 “DevOps ROI,” Fierce DevOps, July 21, 2015: www.fiercedevops.com/tags/devops-roi
 6 “DevOps ROI,” Fierce DevOps, July 21, 2015: www.fiercedevops.com/tags/devops-
roi -how-measure-guide

http://www.fiercedevops.com/tags/devops-roi
http://www.fiercedevops.com/tags/devops-roi
http://www.fiercedevops.com/tags/devops-roi

DevOps for Digital Leaders 143

failure rates. These are metrics that may not conclusively outline the larger
impact of the overall movement, but that can infer some notion of ongoing
improvement.

 While additional forms of DevOps ROI assessment are being created, includ-
ing those focused on measurement of financial impact, enhanced produc-
tivity, and other indicators of organizational efficiency—for now, the most
accurate metrics are those largely focused on applications lifecycle excel-
lence and these figures do provide a compelling case for DevOps adoption
and advancement.

 As Null points out, Patrick Debois, himself a sysadmin, notably stated regarding
examination of overriding DevOps value: “We should be thinking about [ROI]
in terms of … accelerated benefits realization, and shortening that [cycle]. It's
really not the ROI of DevOps, it's really more that the ROI of your original
project can be realized sooner.”

 A Real-World Model for DevOps ROI
 As widely accepted that applying specific ROI calculations within the domain
of IT, in general, has always been a tricky science. This certainly applies to the
domain of DevOps.

 This is largely related to the fact that technology has been largely perceived as
a cost-center versus a driver of profits, making it difficult to convince manage-
ment to increase investment with the specific goal of improving the bottom
line.

 Even with scads of industry analyst calculations aimed at addressing this very
issue (IT ROI), there's been little concrete evidence establishing that IT invest-
ments can in fact provide significant returns. Most experts would more readily
accept that IT may become a larger channel for, or catalyst to growth of the
business, but any notions or promise of massive ROI is often overshadowed
by requirements for sizeable upfront and ongoing investment.

 Further, technology vendors notoriously muddy the waters by proffering
self-serving calculations that often inflate the proposed impact of their
products in the name of boosting sales and competitive prospects. That
said, it’s also recognized that, especially in recent years, technology para-
digms such as mobility, the cloud, and virtualization have delivered econo-
mies of scale and new business opportunities so massive as to make them
difficult to fully quantify.

 So, how does one go about making a believable ROI case around DevOps, a
process that, like many other movements, promises to completely redefine
the manner in which organizations create and monetize their value?

Chapter 9 | DevOps and Real World ROI144

 The 2016 State of DevOps Report, the industry’s leading research proj-
ect—conducted and prepared by the DevOps Research and Assessment
(DORA) initiative—offers an avalanche of data providing concrete testa-
ment to the proposed, and oft-considered fuzzy, benefits of the overall
movement. 7

 For starters, the report posits that so-called “high-performing organizations,”
those already deeply engaged in the use and maturation of DevOps prac-
tices, are “decisively outperforming their lower-performing peers in terms
of throughput.” This finding not only builds on similar conclusions in previ-
ous iterations of the same report, but also maintains that the espoused gap
between DevOps adopters and laggards continues to widen.

 Specifically, DORA contends that such high performers deploy applications
code 200 times more frequently than organizations that have not yet closely
embraced DevOps. So, practically speaking, such organizations have seemingly
become far more capable of engaging the benefits of agile computing; namely,
responding adeptly to changing customer demands.

 In addition, the State of DevOps Report also finds that high-performing orga-
nizations are currently achieving 2,555 times faster lead times, serving as even
greater proof of their abilities to remove obstacles to software innovation and
improvement.

 Perhaps even more importantly, in particular as it relates to the matter
of agility and the ability to cater to evolving performance conditions, the
report estimates that leading DevOps practitioners lay claim to 24 times
faster recovery times and three times lower change failure rates. These
figures formulate a highly compelling narrative when it’s recognized that
reduction of MTTR represents one of the most critical differentiators in
today’s applications economy.

 The State of DevOps Survey, completed by roughly 4,600 technology practi-
tioners, also found that high-performing teams spend far less time on so-called
“unplanned work and rework”—most often required to respond to emerg-
ing issues related to existing applications code. This allowed them to spend
nearly 50 percent more of their time on new work. The latter brand of effort
is typically aimed at adding or improving feature functionality in the name of
increasing business opportunities.

 Lastly, in terms of pure applications delivery ROI metrics, the State of DevOps
Report suggests that leading practitioners are suffering far fewer applications
and services outages—those timeframes when systems are offline and truly
prevent the flow of end user traffic and business.

 7 “2016 State of DevOps Report,” DORA and sponsors, June 22, 2016: https://puppet.
com/resources/white-paper/2016-state-of-devops-report

https://puppet.com/resources/white-paper/2016-state-of-devops-report
https://puppet.com/resources/white-paper/2016-state-of-devops-report

DevOps for Digital Leaders 145

 Based on a framework established by research analysts at IDC, which concludes
that hourly application downtime costs can range from $1.25 to $2.5 billion for
a Fortune 1000 firm, and that the average cost of a critical application failure is
$500,000 to $1 million per hour, 8 the State of DevOps Report allows for the con-
clusion that high-performing organizations, compared even to those with some
level of DevOps adoption, save an average of over $91 million per year.

 Much of this advantage is found, the researchers note, in the form of lower
applications change failure rates, or those updates to software code that
result in subsequent performance issues or outages. While high-performing
DevOps practitioners experience an average change failure rate of 7.5 per-
cent, medium performance organizations see that figure rise dramatically, to a
whopping 38 percent.

 If the undeniable adage that “time is money” applies in today’s applications
economy as much, if not more than ever, then these ROI calculations carry
substantial meaning.

 Beyond such metrics aimed at measurement of improvement appreciated
across the applications lifecycle, the 2016 State of DevOps Report also sheds
light on another area of the movement’s impact that would appear to tran-
scend immediate calculation, but which can certainly be quantified in general
terms. Organizations deeply engaged in DevOps transformation tend to have
happier, more dedicated employees.

 Given the wide recognition that it is far more expensive to hire and train
new employees than retain existing staff, and that highly skilled IT workers in
particular are difficult to find and hold on to, this less hands-on ROI benefit of
DevOps may prove as even more critical support for adoption than some of
the proceeding metrics.

 Specifically, DORA’s researchers found that employees of high-performing,
DevOps-centric organizations are 2.2 times more likely to recommend their
organization as a great place to work, and 1.8 times more likely to recom-
mend their team as a great working environment. The figures were calculated
using the employee Net Promoter Score (eNPS), which is designed to mea-
sure overall employee loyalty.

 As a follow on, it’s worth noting that other research, notably a report pub-
lished by experts at Bain & Co., has found that companies with highly engaged
workers typically produce revenues 2.5 times greater than those with low
engagement levels. In addition, Bain submits that publicly traded stocks of
companies with a high-trust work environment outperformed market indexes
by a factor of three. 9

 8 “DevOps and the Cost of Downtime: Fortune 1000 Best Practice Metrics Quantified,”
IDC, December 1, 2014: http://www.idc.com/getdoc.jsp?containerId=253155
 9 http://www.bain.com/publications/articles/the-chemistry-of-enthusiasm.
aspx#2

http://www.idc.com/getdoc.jsp?containerId=253155
http://www.bain.com/publications/articles/the-chemistry-of-enthusiasm.aspx#2
http://www.bain.com/publications/articles/the-chemistry-of-enthusiasm.aspx#2

Chapter 9 | DevOps and Real World ROI146

 Simply stated, these conclusions, both process-specific and more general in
nature, highlight the specific effect that DevOps is having in terms of creating
the most critical form of ROI measurement—the ability to innovate faster,
build organizational momentum, reduce costs, and attempt to differentiate
offerings within the competitive environment.

 It only follows naturally that organizations spending more of their time creat-
ing new value by translating ideas into product offerings are likely outperform-
ing those struggling to play catch-up by addressing existing shortcomings.

 Measuring the Impact of DevOps Automation
 As previously noted, success in every element of the F1 racing arena is mea-
sured in the smallest of increments, in this era most often in the form of
tenths, or more typically hundreds of seconds. For F1 pit-crews, refinement
of each tiny physical movement or adaptation of time-saving technology can
result in a measurable benefit.

 The same can be said of DevOps adoption, which can be extrapolated to span
nearly every aspect of software design, delivery, and support, along with a
multitude of tools aimed at automating some involved process.

 To isolate any one or two specific processes or tools only provides a small
window into the broader impact of DevOps automation as a whole; however,
leveraging these as a starting point can provide perspective which can then be
expanded across numerous domains.

 One such toolset that has been so examined is the utilization of CA Agile
Requirements Designer solution, which seeks to automate test case design
and execution based on changing requirements—to automate one of the
most time-consuming and resource-intensive problems in applications deliv-
ery—namely, delays created by manual testing.

 By allowing engineering teams to automate the process of creating and apply-
ing software testing requirements, the solution promises to greatly reduce
related cost and complexity, specifically by directly cutting down the number
of required test cycles.

 According to a calculation designed to forecast the potential ROI of CA Agile
Requirements Designer related to cost reduction and avoidance, along with
related revenue enhancement, immediate benefits of employing this process—
representing only one minor aspect of DevOps adoption—immediately come
into focus.

 Based on a real-world implementation of the solution, in addition to gains
related only to software testing, one organization found that it was able to
drive far closer collaboration between business and IT teams, and better

DevOps for Digital Leaders 147

estimate the time and cost of development projects. In addition to the fol-
lowing ROI calculations, these gains map closely to core benefits of broader
DevOps adoption. 10

 In terms of specific ROI, the involved organization found that its worst case
appreciation of benefits over a three-year period would result in a 168 per-
cent return on its existing investment, or a period of 11 months before 100
percent realization of payback on initial costs; the study projected a best case
scenario of 319 percent ROI, or 8 months for complete payoff.

 Among the underlying benefits driving this return were the organization’s
ability to reduce software defect remediation (a similar domain to reduction
of MTTR), lowering of test creation and maintenance costs, and, most impor-
tantly within the overall scope of strategic investment, improved time to value
for application releases.

 At the production end of the software lifecycle, another important DevOps
tooling aspect that warrants ROI analysis is Application Performance
Management (APM). APM seeks to simplify the triage of performance prob-
lems so teams can address issues fast, before there’s an impact on end users
and customers.

 By quickly analyzing performance across a complex array of microservices,
APIs and containers across mobile, cloud, and on-premise applications, these
monitoring tools provide IT operations an essential mechanism for main-
taining expected levels of service together with a high-quality application
experience.

 In a DevOps context and as described in Chapter 7 , these tools are especially
valuable because they help establish feedback loops between operations and
development teams. By gaining insights into application performance before
committing software updates to production, developers can quickly pinpoint
and remediate any issues related to their code. In this way, APM solutions not
only help ensure operational stability, but also assist teams in building quality
into the applications.

 According to a 2015 Total Economic Impact study conducted by Forrester
Research, the potential ROI of CA APM is related to significantly reducing
downtime costs and improving productivity. 11

 10 “CA Test Case Optimizer ROI Business Case Detailed Report,” CA Technologies, July
1, 2015: https://km.ca.com/sales/presales/roi/ROI%20Portal/Dashboard/CA%20
Test%20Case%20Optimizer%20Reference%20ROI%20Business%20Case%20V1FY16REF.
pdf
 11 The Total Economic Impact of Application Performance Management: http://www.
ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-
economic-impact-of-apm.pdf

http://dx.doi.org/10.1007/978-1-4842-1842-6_7
https://km.ca.com/sales/presales/roi/ROI Portal/Dashboard/CA Test Case Optimizer Reference ROI Business Case V1FY16REF.pdf
https://km.ca.com/sales/presales/roi/ROI Portal/Dashboard/CA Test Case Optimizer Reference ROI Business Case V1FY16REF.pdf
https://km.ca.com/sales/presales/roi/ROI Portal/Dashboard/CA Test Case Optimizer Reference ROI Business Case V1FY16REF.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-apm.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-apm.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-apm.pdf

Chapter 9 | DevOps and Real World ROI148

 Interviews with four customers (across financial services, banking, and health
insurance sectors) and subsequent financial analysis revealed that a composite
organization based on the interviewed organizations experienced benefits of
more than $7.2 million versus implementation costs of just over $1.7 million,
adding up to a net present value (NPV) of $5.4 million and an ROI of 306 percent.

 As would be expected, all the interviewed organizations experienced a posi-
tive financial impact by improving the availability and performance of customer-
facing applications. For one company, this extended to reducing service-level
penalty fees because it was able to prove the cause of problems to a key com-
mercial customer, reducing the flow of more than $800,000 that it was paying
yearly to a large, global vendor.

 Beyond availability gains, and importantly from a DevOps perspective, there
were other benefits. The study found that by applying CA APM within the
development process, developer productivity increased. When the develop-
ment team used CA APM to test new code, the organization was able to
accelerate development cycles by 15 percent in the first year. As a representa-
tive of one company said, “In essence, we’re issuing less code or less fixes into
production, which allows our developmental organization to focus more on
maintaining a competitive advantage in the marketplace of what we deliver in
our online solutions.”

 Leveraging CA APM provided insight into performance from mainframes
through mobile devices. Using CA APM allowed the organization to elimi-
nate uncertainty about the cause of problems in complex environments.
CA APM also reduced the average time to resolution and it eliminated the
finger-pointing.

 Avoiding blame games and a hero culture is of course the essence of DevOps,
but application complexity and needing to support multiple stakeholders
means tools must be capable of delivering uninterrupted visibility. The study
illustrated that by providing performance insight from mobile to mainframe,
CA APM allowed the organization to eliminate the uncertainty about the
absolute cause of problems in complex environments. As one performance
analyst from a regional consumer bank stated, “APM gives us micro-visibility
into the customer experience.”

 The Whole Is Greater than the Sum of its Parts
 Given that these aspects (agile requirements design and APM) of applications
delivery represent only parts of the overall lifecycle and areas for potential
DevOps impact, one can easily justify adoption based on the ROI they singu-
larly deliver. However, to be truly reflective of DevOps impact, tools should
be examined in unison. This way, organizations can begin to extrapolate how
combinations across the automated software factory can create the massive
gains highlighted in the State of DevOps Report.

DevOps for Digital Leaders 149

 Figure 9-1 and the notes that follow illustrate a simple but powerful example
of the cumulative benefit of combining automated tools across the software
lifecycle.

 Step 1: Application Experience Analytics

 In this step, tools feed information back to agile teams, which is used as input
for requirements changes and iterative development.

 Expected benefits include constant cycling of intelligence gained through ana-
lytics (e.g., app and functional usage and live performance) that helps develop-
ers, operations, and the business improve applications with every release.

 Step 2: Requirements and Test Case Design

 As requirements change, agile requirements design tools automate test case
design and their execution.

 Expected benefits include maximum functional coverage with the small-
est number of tests, as well as reduction in test case cycles by automatically
removing any outdated, redundant, or duplicate test cases.

 When other tools are integrated, the benefits will continue to accumulate. For
example, by automatically providing synthetic data from a test data warehouse
and matching this directly to the test cases created in Step 2, an organization
can:

• Improve quality —Providing the right data for testing can
reduce defect creation

• Improve testing efficiency —Eliminating data constraints can
reduce time and resources needed to provision data

 Figure 9-1. Cumulative benefits of combining multiple tools example: application experience

analytics and agile requirements design

Chapter 9 | DevOps and Real World ROI150

• Reduce costs —Creating accurate subsets of data can
reduce infrastructure cost

 Summary
 As you’ve seen, current measurement of DevOps ROI remains somewhat
nascent, and difficult. However, real-world use cases and industry research
clearly highlight the massive impact that the adoption of DevOps practices is
having among today's early adopters. The future looks bright for those who
get on board, while those left behind may struggle to compete and survive.

 In the next and final chapter, we’ll look at some additional concepts, techniques,
and emerging trends that have begun to populate the DevOps landscape and
examine how these may be used to enhance a DevOps program.

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_10

 DevOps
Finetuning
 Additional Considerations, Concepts, and Practices

 Congratulations, you’ve read this far and are ready to floor the DevOps accel-
erator. Like a Formula 1 driver in pole-position at the start of a race, you’re
eager to get the green light and hit the gas. Hopefully, you’re part of a team
with a winning culture, managing to business outcomes, and building the strat-
egies needed for continuous improvement.

 But this is no time to be complacent. Like Formula circuits and race day
conditions, business changes constantly. Just as the Monaco circuit demands
a different race strategy than Monza, DevOps programs must adjust to
different circumstances. For a business focused on operational efficiency
(doing more of the same, only faster and cheaper), or government agencies
with shrinking budgets, Lean aspects of DevOps might take precedence.
But if a business is adjusting its operating model (doing the same things,
but in radically different ways), agile methods and continuous delivery will
come more to the fore. Whatever the case, be prepared for change and
never underestimate the importance of strong culture and building and
cultivating great teams.

 C H A P T E R

10

Chapter 10 | DevOps Finetuning152

 Cultural Recalibration
 Formula driver Daniel Ricciardo drove brilliantly at Monaco in 2016, but
when his pit-crew wasn’t ready for a tire change, he lost precious seconds
and the race. And while ten seconds or so doesn’t seem like much, it made
the difference between Ricciardo spraying champagne and finishing a mis-
erable second.

 Incidents like these reaffirm that people make mistakes all the time—it’s what
makes us human. Even a finely-tuned DevOps program won’t be immune to
people-related issues and why culture can’t be overstated.

 Unlike process, culture can’t be automated (not yet anyway), which is why
organizations must constantly work on fine-tuning. Yes, this involves building a
strong collaborative workforce, but also understanding what conditions exist
that cause people to persist or revert back to behaviors counter to DevOps
thinking-also known as “falling off the DevOps wagon”.

 The Normalization of Deviance
 How many times have you witnessed a sub-optimal IT practice that every-
one else thinks is okay? Then over time have you accepted the behavior and
started practicing it too? We all have—it’s quite normal.

 Regardless of whether you lead a startup or work in an established business,
we all have a tendency to accept suspect behaviors. Even if outsiders see them
as wrong, our IT teams are so accustomed to using them (without any adverse
consequences) that they’re quickly established as “normal” and accepted.

 Studies into what’s commonly referred to as the “normalization of deviance”
have been conducted in areas from healthcare to aerospace, with evidence
showing that many serious errors and disasters occur because established
standards have been bypassed and bad practices “normalized”.

 While examining this phenomena is critical in the context of safety, it’s
equally applicable in how we develop, secure, and operate software applica-
tions. With the boundaries blurred between the digital and physical world,
any adverse behavior leading to security and reliability issues could have
dire consequences. And when software becomes infused into long-lasting
products (from light bulbs to limousines), it’s not so easy to discretely exit
markets.

 As businesses increasingly rely on software innovation for market expansion,
faster time-to-market and a high-quality customer experience become essen-
tial differentiators. Unfortunately, both can be compromised if rigid change
controls or “speed at all cost” mandates lead to a bad behaviors.

DevOps for Digital Leaders 153

 Interestingly, guidance from other fields can help IT identify and eliminate
poor practices. In the healthcare field, for example, studies have identified
seven factors that lead to a normalization of deviance. 1

 All of these are extremely relatable to IT.

 The rules are stupid, dumb and inefficient —In healthcare, accidents can
occur when medical practitioners disable equipment warning systems because
alarms are seen as distracting. This happens in all the time in IT with dire con-
sequence. Like when IT operations staff miss major problems because they
filter out noise and alerts on monitoring consoles they regard as irrelevant.
Or when testing is deliberately skipped because of lengthy manual processing
and provisioning delays.

 Knowledge is imperfect and uneven —Employees might not know that a
rule exists, or they might be taught a practice not realizing it’s sub-optimal. In
IT this persists because many new employees feel uncomfortable asking for
help, or the application of new technologies distorts logical thinking.

 The work itself, along with new technology, disrupts work behav-
iors —To support goals of more continuous software delivery, organizations
are introducing many new technologies and methods, such as microservices
and containers. Along with the new tech, new work practices and learning
demands may lead staff to poorly implement the technology or use it to per-
form a function it was never designed for. For example, containerizing a legacy
system just because it’s “technically feasible”.

 We’re breaking rules for the good of the business —Staff may bypass
rules and good practice when they’re incentivized on faster delivery times
or delivering new functional software enhancements. For example, procuring
additional (but unnecessary) hardware capacity to rush through an update,
rather than addressing the root cause of persistent performance problems.

 The rules don’t apply to us…just trust us —Empowered agile teams are
fantastic, but with great power comes great responsibility. Teams might slam
through more code, but poorly governed open source access or bypassing
compliance policies when generating test data can derail a program or lead to
massive security breaches. Unfortunately in today’s fast-paced digital business,
talented professionals often feel completely justified in playing the “trust us,
we know what we're doing” card.

 Employees are afraid to speak up —Violations become normal when
employees stay silent for fear of admonishment. How many times have bad
software code practices been tolerated because junior staff is afraid to speak
up? Even in IT organizations with a strong blameless culture, people can remain
silent for fear of appearing “mean” to their colleagues.

 1 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821100/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821100/

Chapter 10 | DevOps Finetuning154

 Leaders withhold or dilute findings on application problems—
 Whether you work in healthcare or IT, no one wants to look bad to managers.
Rather than present ugly and unpleasant realities, many will distort the truth;
presenting diluted or misleading information up the command chain. In IT, this
behavior is easily normalized, especially if teams get away with reporting tech-
nical vanity metrics over business outcome-based performance indicators.

 ■ Tip Staff will never admit to anything they don’t see as wrong. Get out of the office and

“gemba,” or walk your own software production line. Look for all the warning indicators that might

be causing people to do the wrong things.

 Combatting Sub-Optimal Behaviors

 No sudden cultural reawakening across the IT organization will eliminate
ingrained bad practices, but DevOps and Lean thinking can help identify the
warning signals and can become the catalyst to drive behavioral improvement.
This can involve:

• Fostering open discussion —It’s easy to stand back and
do nothing if a sub-optimal practice has yet to cause
problems. But over time, poor behaviors become more
difficult to remove, so catching early is critical. Ongoing
education and open discussion can help with both
development and operations participating. Some of this
might be uncomfortable and peer-level critiques are
never easy, but it’s better than conducting blame games,
post outage or major incident.

• Managing to outcomes —People are reluctant to change
behaviors if they perceive the probability of a major inci-
dent or outage to be low. Part of this is normal human
behavior, but can be exacerbated when the staff down-
grades the likelihood of problems eventuating because
diagnostics point only to minor technology issues.
Therefore, it’s important for staff to clearly understand the
business impact (worst case scenarios) of poor practices.

• Finding visual clues —This includes visualizing the flow of
value delivered by software applications and pinpointing
all the bottlenecks and constraints. Analogous to unsafe
stepping stones across a stream, these are the value inter-
rupts. When examined, they reveal all the process and

DevOps for Digital Leaders 155

technology issues causing staff to do the wrong things.
Immediate candidates are software release and testing
processes, but analysis shouldn’t be restricted to devel-
opment. Everything from enterprise architecture, stake-
holder engagement, and information security, to vendor
management and customer support can be a choke-point.

 DevOps and Talent Management
 While DevOps promotes the collaboration of software development and
other IT groups, there is nothing stopping other departments across the orga-
nization from becoming involved in the program. Even the HR team can be
included, especially with regards to talent acquisition and development.

 In the application economy, demand for technology professionals in areas
such as IT architecture, big data/analytics, and cloud computing is growing fast.
Having DevOps skills is also becoming financially attractive. As was indicated
in a 2015 survey from the cybersecurity firm Incapsula, which revealed that
high school graduates in entry-level jobs requiring DevOps skills are seeing
a median starting salary of $106,000. 2 But in advanced economies, demand is
outstripping supply. In the UK, for example, the Tech Nation report, from Tech
City and innovation charity Nesta, indicated that 40 percent of digital entre-
preneurs say they face challenges finding skilled digital workers. 3

 The source of skills is also changing. The Tech Nation report also revealed
informal or in-house training as the most common source of skills, with tradi-
tional universities ranking relatively low in IT activities. This is in no small part
due to easier access and cheaper technology. For example, and as of July 2016,
GitHub (the open source development platform) has 15 million people col-
laborating across 38 million repositories, while the credit card-sized raspberry
PI processor has reached 5 million sales.

 So You Think You Can DevOps?

 With major supply challenges, HR can work collaboratively with IT to enrich
the organization with much-needed DevOps skills. This will involve sourcing
by traditional mechanisms (e.g., online job boards), but since DevOps requires
no formal qualifications or certification, careful attention during candidate
screening and selection is needed.

 2 DevOps Salary Survey, 2015: http://lp.incapsula.com/rs/incapsulainc/images/
Report%20-%20DevOps%20Salary%20Survey%202015.pdf
 3 Tech Nation, 2016: http://www.nesta.org.uk/sites/default/files/tech_nation_2016_
report.pdf

http://lp.incapsula.com/rs/incapsulainc/images/Report - DevOps Salary Survey 2015.pdf
http://lp.incapsula.com/rs/incapsulainc/images/Report - DevOps Salary Survey 2015.pdf
http://www.nesta.org.uk/sites/default/files/tech_nation_2016_report.pdf
http://www.nesta.org.uk/sites/default/files/tech_nation_2016_report.pdf

Chapter 10 | DevOps Finetuning156

 Ideally, DevOps practitioner should exhibit the following skills:

• People —DevOps practitioners need to be good commu-
nicators, which is a skill that’s not normally associated
with introverted technologists. Look for people who
can exhibit evidence of written and verbal communica-
tion—within, across, and external to organizations. For
example, has the candidate presented at conferences or
tech meet-ups?

 ■ Note HR can help IT develop good communication skills through the introduction of formal

courseware and “lunch and learn” sessions.

 Careful consideration should be given to candidates who
have experience working with business stakeholders
and can clearly articulate strategy, priorities, and goals.
DevOps practitioners should be able to describe situa-
tions where they collaborated and shared information to
achieve better business outcomes.

• Process — While it's possible for DevOps to work with
Waterfall development, success is more likely in environ-
ments where agile methods have been applied. Strong
candidates will demonstrate understanding and expe-
rience in one or more agile approaches (e.g., Kanban,
Scrum, or SAFe).

 Value should also be placed on candidates who can dem-
onstrate knowledge in Lean manufacturing concepts such
as Just-In-Time and Theory of Constraints. Extra marks
if they can illustrate examples of where and how they
applied these principles in an IT context.

 ■ Note Working with IT managers, HR could introduce an online library of DevOps, agile, and

Lean related books. Some great examples include The Phoenix Project and The Goal and Lean

Enterprise. 4 Don't limit access to IT; make the resources available across the organization.

 4 The Phoenix Project, Gene Kim , Kevin Behr, George Spafford, ISBN 978-0988262591
 The Goal: A Process of Ongoing Improvement, Eliyahu M. Goldratt , ISBN 978-0-88427-178-9
 Lean Enterprise, Jez Humble , Joanne Molesky , Barry O'Reilly, ISBN 9781449368425

https://en.wikipedia.org/wiki/Gene_Kim#Gene Kim
https://en.wikipedia.org/wiki/Special:BookSources/978-0988262591#Special:BookSources/978-0988262591
https://en.wikipedia.org/wiki/Eliyahu_M._Goldratt#Eliyahu M. Goldratt
https://en.wikipedia.org/wiki/Special:BookSources/978-0-88427-178-9#Special:BookSources/978-0-88427-178-9
http://www.bookdepository.com/author/Jez-Humble
http://www.bookdepository.com/author/Joanne-Molesky

DevOps for Digital Leaders 157

• Technology — DevOps practitioners will have acquired a
range of skills across the software development lifecycle,
including, but not limited to, agile project management,
build management, and release automation. Strongly con-
sider candidates who are experienced integrating these
to build a fully automated DevOps toolchain.

 ■ Note Look for individuals who have worked in cross-functional teams and have broadened

their skills by learning new technologies. Individuals who not only use technology but have

contributed to its development are also good candidates.

 Rather than present resumes, strong technologists will emphasize their
achievements and expertise via actual contributions within the agile and
DevOps community. This can include technology blogs, and open source con-
tributions (code, scripts, and commentary). Ideally, sysadmin candidates will
have coding skills across a variety of programming languages, while developers
will be familiar with scripting methods.

 Various Talent Management Hacks

 Age shouldn't be a factor when selecting DevOps talent. Many of the best
practitioners have years of experience adopting new technologies and prac-
tices. In the enterprise, this is especially valuable since many legacy systems
will need to be integrated with cloud applications, which requires a compre-
hensive understanding of the inner workings of many technologies and all
their limitations. That said, however, it'll be necessary to replenish DevOps
programs with fresh talent. And since supply is problematic, HR can assist
technology teams with innovative acquisition and development strategies. This
could include the following.

 IT Apprenticeship and Graduate Intake Programs

 Many organizations have graduate intake programs, some of which don't
require applicants to have formal IT qualifications. They encourage anyone to
apply who has a passion for technology. One example is the ICT Apprenticeship
program run by the Department of Finance in Australia. 5 After a series of
interviews, successful applications are employed by a sponsoring government
agency. Upon assignment, they combine four days of work with one day of
formal IT study, leading to certification.

 5 http://www.australia.gov.au/information-and-services/jobs-and-workplace/
australian-government-jobs/ict-apprenticeship-programme

http://www.australia.gov.au/information-and-services/jobs-and-workplace/australian-government-jobs/ict-apprenticeship-programme
http://www.australia.gov.au/information-and-services/jobs-and-workplace/australian-government-jobs/ict-apprenticeship-programme

Chapter 10 | DevOps Finetuning158

 Such programs are a great way to infuse talent within an organization, but
there are challenges that HR teams must address. Often in these types of ini-
tiatives, apprentices are rotated through different areas of IT—the aim being
to familiarize new staff with all aspects of the IT business. This is fine in theory,
but in a DevOps context (where cultural improvement is so important), it can
actually be counterproductive. If, for example, the organization is functionally
siloed, divisive, and averse to change, apprentices could become isolated, and
rotating passionate and eager technologists through highly process-centric
areas can be the fastest way to dampen their spirit and enthusiasm.

 ■ Tip Consider organizing graduates or IT apprentices in self-managing teams or “pods” with

full program oversight by experienced leaders and mentors. Always assign work that is meaningful,

valuable, and measurable. Stagger the arrival of new intakes and place them in the same workplace

as existing apprentices.

 DevOps Hackathons and Coding Days

 Hackathons are short events where all kinds of specialists come together to
work intensively on small technology projects. Hackathons can be run as a
contest (e.g., prize for best mobile app innovation), hosted internally or exter-
nally, or purely social. In some cases, they even have the lofty goal of creating
commercially viable software solutions.

 With DevOps, hackathons can be valuable for instilling the value of collabora-
tion and teamwork within the IT organization. HR can take the lead in helping
to organize and arrange these events, but should work with IT leadership to
ensure maximum DevOps benefit. For example, conducting the hackathon
away from the workplace where participants could be distracted. Other fac-
tors to consider include:

• Balancing teams —Including developers, sysadmins and
project managers, enterprise architects, and security
specialists.

• Providing broader deliverables —Don't restrict hackathons
to new apps. Look for other opportunities to improve
quality. For example, give prizes for the fastest way to
find the root cause of a complex application performance
problem; the most innovative application of security to
increase resilience; and the best API to securely expose
enterprise data.

DevOps for Digital Leaders 159

• Managing expectations —Don’t expect clean and robust
code from a short hackathon; you'll get alpha at best.
Consider longer online developer challenges if the goal is
to fuel business with viable business prototypes (e.g., inte-
grating valuable enterprise data with third-party systems).

 Involving partner developers in a hackathon is a great opportunity to nur-
ture innovation but requires additional oversight and support. Providing badly
formatted open data without metadata, or poorly documented and unman-
aged APIs, should be avoided. When involving third-party developers, consider
methods to simplify API discovery, registration, support, and engagement,
including providing an API catalog, sample code, and mobile device SDKs.

 DevOps and the Internet of Things
 At the 1990 Interop computer conference, two guys connected a kitchen
toaster to the Internet. This early attempt at appliance networking paved the
way for what’s now called the Internet of Things (IoT). 6

 As of 2016, it's estimated there could be more than 10 billion Internet-
connected elements , ranging from watches and cars to just about anything in
the “thing” category, including light bulbs, fitness wearables, fridges, and, yes,
even pets and diapers.

 But beyond the big numbers, marketing spin, and hype, the business potential
of IoT is being increasingly exploited by early movers. Perhaps not surprisingly,
this includes some major businesses and brands.

 Bosch, for example, the German multinational engineering and electronics
company, announced an IoT cloud. This is the latest initiative as the company
transitions from traditional industrial company to a blended manufacturer and
technology provider. 7

 While connected home and car use cases grab our attention, many industries
are exploiting standards, unified architecture (IT and industrial), and innovative
software solutions to connect device and sensors to IT systems.

 Take for example manufacturing. When plant production systems can be inte-
grated with customer demand analytics, maintenance windows can be opti-
mized. Similarly in energy and utilities, integrating smart meters with back-end
applications and analytics could become a system to predict energy demand
across the grid.

 6 http://www.livinginternet.com/i/ia_myths_toast.htm
 7 http://www.wsj.com/articles/robert-bosch-launches-own-cloud-for-
internet-of-things-1457528014

http://rewrite.ca.com/us/articles/security/iot-is-bringing-lots-of-code-to-your-car-hackers-too.html
http://rewrite.ca.com/us/articles/security/the-hacked-home.html
http://rewrite.ca.com/us/articles/security/the-hacked-home.html
http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.wsj.com/articles/robert-bosch-launches-own-cloud-for-internet-of-things-1457528014
http://www.wsj.com/articles/robert-bosch-launches-own-cloud-for-internet-of-things-1457528014

Chapter 10 | DevOps Finetuning160

 This convergence will require new approaches to developing and operating
applications, and DevOps with its focus on shortening delivery cycles while
improving software quality is absolutely essential. However, IoT project suc-
cess depends on DevOps practitioners addressing some new challenges:

• Bridging another cultural divide —The development and oper-
ations divide is nothing compared to the cultural chasm
spanning traditional IT and industrial operations. While IT
speaks of Java, C++, NoSQL, and the IP stack, plant and
industrial engineers talk of programmable logic controllers
and supervisory control and data acquisition (SCADA).

 ■ Note Putting all IT “ego” aside, DevOps teams need to build a good understanding of IoT

related terms, technologies, and limitations. To assist, try to involve product specialists (e.g.,

industrial engineers, product managers, and designers) in DevOps/IoT initiatives.

• Solving complex security problems —Connecting previously
isolated physical devices to networks creates additional
threat surfaces. At best this could mean service interrup-
tion, at worst physical injury or loss of life. This conse-
quence was disturbingly illustrated in the Jeep security
exploit, where hackers demonstrated wireless access to
vehicle infotainment and controls. 8 These could be expen-
sive IoT lessons in the automotive industry where fleets
of new cars can leave a dealership containing up to 70 spe-
cialized computers and more than 20 million lines of code.

 ■ Note Considerable investment will be needed to address IoT security issues. DevOps and

security teams must review entire IoT processes (device to cloud or back-end application), thus

ensuring that embedded software applications and data can be verified and encrypted.

• Managing privacy —Internet privacy issues could be noth-
ing compared to the challenges introduced by IoT. As
the physical and digital world becomes blended, smart
devices have the potential to track behavioral patterns
everywhere—as we sleep, during exercise, when we
drive, consume energy—you name it!

 8 https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

DevOps for Digital Leaders 161

 Tapping into this information means DevOps practitioners must pay care-
ful attention to issues around data ownership, compliance, data access, and
sharing arrangements.

 ■ Note As more customer data is obtained from IoT devices and consumed by complex analytical,

and big-data systems, careful consideration to accurate and compliant data management (e.g.,

during testing) becomes more critical.

• Guidance on IoT interoperability —Many industrial opera-
tions and IoT systems work in isolation and use proprie-
tary networks (e.g., Modbus and BACnet) and protocols.
In many cases, what works in one industry vertical won't
work in another. While this problem can't easily be
addressed, DevOps teams involved in IoT projects must
become knowledgeable on emerging IoT standards and
interoperability initiatives. Examples include The Open
Connectivity Foundation and the Allseen Alliance. 9

• Understanding physical device limitations — Depending on
business context, IoT devices characteristics and usage will
impose many limitations on software development, testing,
and operations. Not the least, constraints on what pro-
gramming languages can be used for IoT development and
strict limitations on runtime size. Since software won't be
operating in the confines of a 24/7 data center, there'll also
be design issues to factor in (e.g., device battery life, envi-
ronmental/weather conditions). Consider too, challenges
making software updates across sub-optimal networks, the
mass migration of sensor data to the cloud for analysis, and
determining embedded software security risks (especially
in OEM devices and third-party components).

 DevOps for the Public Sector
 You can be forgiven for thinking that DevOps only works in the private sector.
It's simply not true.

 Governments across the world continue to search for better ways to deliver
citizen services through new technologies and practices. Agile and DevOps
are gaining traction, with federal U.S. departments, such as U.S. Citizenship
and Immigration Services (USCIS) and the Environmental Protection Agency,
becoming adopters.

 9 https://allseenalliance.org/ https://openconnectivity.org/

https://allseenalliance.org/
https://openconnectivity.org/

Chapter 10 | DevOps Finetuning162

 But adoption isn’t limited to the United States. In Australia, the recently
formed Digital Transformation Office (DTO) leverages agile methods and
DevOps principles to support its mission of leading the digital transformation
of government services. 10

 But as of 2016, the public sector hasn’t fully embraced DevOps thinking. This
was well illustrated in a Vanson Bourne study, which indicated that public sec-
tor organizations are a third less likely to adopt DevOps compared to their
private sector counterparts. 11

 Yet those who are starting a DevOps journey are seeing benefits. As indi-
cated in the study, more than one-third of public sector DevOps adopters
have experienced application quality improvements, while almost half have
seen reductions in IT spend. This last point is especially pertinent for budget-
constrained government agencies.

 DevOps and Lean to Improve Government IT
Outcomes
 Government agencies are under increased scrutiny to ensure money is spent
wisely. Unlike their private sector counterparts, who can justify mega IT
spending as the means to increase revenue and market share, government
agencies can only think in terms citizen-centric service improvement, which
given the overarching political context and climate, might not be a top priority.

 Even when budget is available, the track record in government IT delivery
hasn’t been great. According to Standish Group, just over 94 percent of all
large government IT projects (2003-2012) were over budget, behind schedule,
fell short of user expectations, or had to be abandoned completely. 12

 With a 6 percent success record, it’s perhaps not surprising that the DevOps
mantra of “failing fast” doesn't fully resonate in government departments.
Apart from the cost factor, no IT manager would want to front a congressio-
nal committee when critical government services have been disrupted.

 With increasing budget constraints, probably the best place to start a DevOps
program in a government agency is to focus on the Lean principles that under-
pin much of the thinking. By identifying all elements of “waste” that incur greater
cost and negatively impact delivery, agencies can improve cost structure while
speeding delivery. To this end, and before any investment is made in tools,

 10 https://www.dto.gov.au/
 11 https://www.ca.com/us/rewrite/articles/devops/research-report--devops-
the-worst-kept-secret-to-winning-in-the-application-economy.register.html
 12 http://www.brookings.edu/blogs/techtank/posts/2015/08/25-yaraghi-
government-it-projects

https://www.dto.gov.au/
https://www.ca.com/us/rewrite/articles/devops/research-report--devops-the-worst-kept-secret-to-winning-in-the-application-economy.register.html
https://www.ca.com/us/rewrite/articles/devops/research-report--devops-the-worst-kept-secret-to-winning-in-the-application-economy.register.html
http://www.brookings.edu/blogs/techtank/posts/2015/08/25-yaraghi-government-it-projects
http://www.brookings.edu/blogs/techtank/posts/2015/08/25-yaraghi-government-it-projects

DevOps for Digital Leaders 163

mature government agencies will carefully examine the entire end-to-end soft-
ware delivery cycle and remove any cultural, process, or technology related
inhibitors that add no value. The intention of course is to increase speed and
quality, but a very important “by-product” for the budget constrained agency is
cost reduction.

 Many wasteful practices traditionally associated with manufacturing are appli-
cable in a government software development context.

• Long waits— Some government agencies remain fixated on
performing lengthy change review processes. But with new
technologies now making it possible to deploy fully cer-
tified stacks to the cloud, only application changes need
to be checked. This significantly reduces release times
and administrative costs. Of course, there will be occa-
sions when teams require access to production systems
and data for testing, but cycle time can be shortened with
technologies that virtualize or emulate dependent systems.

• Excess inventory —Over years, agencies have acquired a
complex array of technology. These include mainframes,
applications, and databases. Each servicing agency require-
ments in everything from massive transactional processing
to data matching and analytics. In order to manage this
complexity, agencies have become reliant on contractors
who generally shun agile and DevOps concepts, preferring
instead contracts with fully defined requirements and lon-
ger delivery cycles. To address this, agencies should imme-
diately review the IT culture and skills gaps issues this
causes, plus consider engaging nimbler agile and DevOps
minded contractors via simpler procurement processes.

• Slow motion —As with large commercial enterprises, gov-
ernment agencies can be inhibited by bureaucracy and
controls. As governments look to adopt DevOps, it’s
important to analyze every unproductive process across
the software development lifecycle. A large part of the
magic in DevOps comes from “doing rather than pro-
crastinating,” so agencies should start familiarizing them-
selves with smaller and iterative approaches to software
development combined with fully automated release pro-
cesses—a state where everything moves with purpose.

 Even in situations where rigorous compliance testing is seen as a tough but
necessary control point, DevOps and automation can pay dividends. By encap-
sulating testing within development for example, DevOps practitioners can
enact the necessary speed and quality improvements, while demonstrating
reduced costs in auditing, risk management, and compliance. This is again very
attractive to cash-constrained government departments.

Chapter 10 | DevOps Finetuning164

• Untapped skills —When things are slow and hard to
change, everything atrophies, including staff and their
skills. If DevOps is to help slow moving government
agencies, it’s important to identify all issues that prevent
change. Over years many staff will have become accus-
tomed to working in a certain way, with incentives linked
to these practices. It's important to maximize the motiva-
tional impact of new DevOps programs, while also ensur-
ing staff to stay the course. This may involve changes in
organizational structures, new talent acquisition strate-
gies (discussed earlier), and the adoption of shared goals,
incentives, and metrics.

 Summary: The Seven Point Action Plan
 As we’ve discussed in this book, DevOps aims to break down the traditional
barriers between development and other IT groups. By unifying people, tech-
nology, and processes across a modern software factory, new applications and
updates can be built, tested, and deployed more quickly. Together with con-
tinuous feedback, businesses can enhance customer experiences, accelerate
time to value, and better leverage IT as a competitive differentiator.

 But while interest in DevOps continues to grow, many implementations can
fall short of expectations or stall completely. In part, and as we've described,
this is because DevOps challenges conventional IT wisdom—placing less
emphasis on process rigor and more on removing organizational barriers and
continuous adjustment.

 As such, DevOps doesn’t come pre-packaged with implementation blueprints;
however, there are steps any organization (irrespective of DevOps maturity)
can follow to optimize a DevOps initiative and we present these as a summary.

 Understand the Business Goal
 A program like DevOps is going take lots of work. It's great to get carried
away with the “DevOps buzz,” but DevOps comes with a price tag, which
includes new tools and processes to learn, people to cajole (and console),
and teams to restructure. As with any business decision, all this cost and work
must be carefully weighed against the expected benefits.

 Doing DevOps for the sake of DevOps is no way to start. Fall into this trap and
customer value and business benefits take a backseat and become less impor-
tant than protracted technology and process discussions. That’s a DevOps
disaster before you've even started.

DevOps for Digital Leaders 165

 It's important therefore to get business and IT on the same DevOps page.
Focusing first on the needs of the business and then aligning DevOps, includ-
ing metrics, tools, and processes.

 By focusing first and foremost on the needs of the business and clearly articu-
lating concrete goals across IT, you'll ensure a consistent approach and avoid
misinterpretations or DevOps misfires.

 As we like to say—don't fall in love with DevOps, fall in love with the business
problem and let DevOps help you solve it!

 Cultivate Senior Level Sponsors
 If you're going to be changing things like organizational structures, work prac-
tices, and incentives, you'll need some support. In large organizations, change
takes time, so seek out a sponsor to facilitate decisions and make the tough
calls.

 Executive level sponsors add substance to the DevOps sauce. They give teams
a sense that there's real purpose behind the initiative and that it’s not another
process “wild goose chase”. Remember too that senior managers are great
at PR, which is very useful when you want to spread the good word about
DevOps, build momentum, and gain more support.

 ■ Note There's no such thing as a “free lunch”. Executive sponsors expect real returns from

DevOps, so try to make sure the goals being set can help them meet theirs.

 Select Your Pit-Crew
 People will make or break a DevOps initiative, so choosing the right staff is
important. There are no hard and fast rules, but seek out employees who can:

• Work well in teams —Look for people who have demon-
strated a willingness to collaborate across organizational
boundaries.

 ■ Caution Be careful building a dedicated “DevOps team,” as this might become another silo.

However, recognize that temporary teaming could be a good way of seeding DevOps goodness

across the wider organization.

Chapter 10 | DevOps Finetuning166

• Show resilience and flexibility —Great DevOps practitio-
ners quickly learn from failure and embrace new ways of
thinking to challenge the status quo. With developers for
example, this can involve taking full ownership of produc-
tion rollouts, not just the code they’re working on.

• Empathize with colleagues —Seek out staff across the orga-
nization who consistently place themselves in the “shoes”
of their colleagues. If a developer takes time to work with
on-call staff to determine where supportability improve-
ments are needed then they’re a great candidate.

 ■ Note Generalists are preferred over specialists, but strong consideration should be given to

staff who have experience with newer practices, including continuous integration and testing,

release automation, and toolset integrations.

 Revisit Chapter 3 and the section on DevOps culture for more pointers.

 Choose an Immediate Deliverable
 Select an application that’s small enough to remain manageable with new
DevOps approaches, but has enough business visibility to stimulate wider
adoption. There’s nothing to stop applying a DevOps approach to any type of
application, but it’s generally better suited to mobile and web facing applica-
tions, which are architected to take advantage of aspects of DevOps tooling
described in this book, including API management, continuous delivery, and
“shift-left” monitoring.

 Legacy applications and systems-of-record can also benefit hugely from
DevOps and shouldn’t be ignored. Newer customer-facing mobile apps may
need to integrate with back-end applications hosted on mainframes providing
essential horsepower. Unfortunately, the practice of managing mainframes in
silos can severely impact software development and adversely impact cus-
tomer experience.

 Take, for example, a situation where a mobile development team needs access
test data residing on a mainframe or insight into the performance implications
of newly released code. These teams must have fast unconstrained access to
this data to meet schedules together with end-to-end performance insights—
mobile to mainframe. If teams work in silos using point tools, this will be dif-
ficult to achieve.

http://dx.doi.org/10.1007/978-1-4842-1842-6_3

DevOps for Digital Leaders 167

 Many advanced tools, together with in agile-style methods, can help align
mainframe management with a DevOps initiative. This includes:

• Extreme performance visibility —These tools provide deep
visibility into complex interactions and transactions
across mobile, web, and mainframe applications. They help
teams quickly understand and troubleshoot even the old-
est and most complex code bases.

• Constraint removal —By simulating mainframe infrastruc-
ture dependencies and providing synthetic test data,
developers and testers can maintain the pace of DevOps
delivery without compromising quality or compliance
goals.

• Unified infrastructure management —Enables mainframe and
non-mainframe experts alike to better understand infra-
structure interdependencies, thereby detecting and fixing
problems faster and without the need for specialist tools.

• Extensible analytics —By extending analytics into areas
such as workload automation , teams can perform real-time
forecasting of critical back-end services. Using advanced
statistical methods to calculate job duration, administra-
tors can fine-tune workload schedules and processing to
cater to changing conditions.

• Exposing rich data sources —Allows developers to rapidly
create application back-ends for internal applications,
mobile apps, standalone microservices, data as a service,
and partner integrations. These systems can help decom-
pose large mainframe applications into self-contained
units with everything needed for app delivery, including
data integration, business logic, and a robust API layer.

 Revisit Chapters 4 - 7 , where these capabilities are described in greater detail.
Always consider that tooling shouldn’t be limited to managing one particular
platform or supporting a single group.

 Build a Comprehensive Metrics Program
 Traditionally, and as we described in Chapter 3 , goals and objectives have been
set at a departmental level, with methods for measuring IT capability skewed
toward resolving problems and rewarding the “heroes” who fix them. With
DevOps, objectives should be set at a “singular team” level and aligned to
the desired business end-state—digital transformation via faster release of
high-quality software.

http://dx.doi.org/10.1007/978-1-4842-1842-6_4
http://dx.doi.org/10.1007/978-1-4842-1842-6_7
http://dx.doi.org/10.1007/978-1-4842-1842-6_3

Chapter 10 | DevOps Finetuning168

 With this in mind, work collaboratively to build shared objectives and metrics
aligned to business objectives. Avoid vanity metrics that distort the truth or
incentives that reward siloed behaviors. Next, set some improvement targets
and assess the capability of existing tools in meeting and surpassing your goals.

 ■ Tip Just because a target is constantly being achieved doesn’t mean improvements can’t be

made. Don’t get complacent. Just like code, DevOps metrics need constant care and attention!

 Integrate DevOps with Existing Practices
 As we discussed in Chapter 8 , DevOps doesn’t preclude leveraging other
methodologies and best practices, including ITIL.

 To avoid methodology “turf wars,” it’ll take teams working collaboratively to
identify where existing processes need to refining to cater to DevOps-style
delivery. Obvious places to start are with existing release and change man-
agement, but be prepared for “give and take” on both sides. Never forget
that DevOps itself can benefit from well-established processes, such as inci-
dent and problem management to strengthen feedback loops and accumulate
organizational knowledge.

 ■ Tip Consider establishing a single workflow-based communication process between

developers and other groups, including support staff. Integrate these with monitoring, ticketing,

and help desk solutions to make problems and solutions visible across the entire organization.

 To be fully effective, DevOps practitioners also need to work with many
other stakeholders, including enterprise architects and security. Once again,
and using the guidance described in Chapter 8 , be prepared to adjust existing
methods and take other perspectives on board.

 Automate the Pipeline; Strengthen the Toolchain
 Reexamine the “eight elements of waste” introduced in Chapter 3 . It’s a useful
framework to better identify all the existing process and technology con-
straints across your own software factory.

 While pushing code all the way to production via fully automated releases
might be the holy grail of DevOps, it could be better to start by reviewing
those areas experiencing the greatest pain or where integrated toolsets can

http://dx.doi.org/10.1007/978-1-4842-1842-6_8
http://dx.doi.org/10.1007/978-1-4842-1842-6_8
http://dx.doi.org/10.1007/978-1-4842-1842-6_3

DevOps for Digital Leaders 169

help fill in the release pipeline “whitespace” (for examples, revisit the release
automation integration use cases illustrated in Chapter 6 and the automated
testing trifecta presented in Chapter 5).

 In other cases, reviewing waste and constraints may indicate that operational
functions have the most to benefit from automation in the short term. This
could include the adoption of modern configuration methods (infrastructure
as code), or establishing performance monitoring and analytics to build criti-
cal bidirectional feedback loops between development and IT operations (for
an illustrative example, loop back to case study and discussion on “shift-left”
monitoring presented in Chapter 7).

 ■ Tip As in traditional manufacturing, many wasteful IT practices and constraints inhibit the flow

of value/throughput. Identify the greatest painpoint and potential for human error, be it managing

test data, accessing infrastructure dependencies, or conducting manual and error-prone handoffs.

 In Salute of DevOps
 In a world where customers and citizens expect so much more from technol-
ogy, the race is on to develop a finely tuned high-performance IT function.
Hopefully by reading this book you're in a better position to see how DevOps
supports this imperative and can develop the strategies needed to reignite
your business.

 In Formula 1 racing, winning one race doesn't win a championship. It’s the
same in software development. DevOps teams understand this implicitly. They
are smashing silos, collaborating fully, and leveraging advanced automated solu-
tions to eke out business performance improvements everywhere, as they
build, test, release, and manage….

 …. superior high-quality software solutions, continuously delivered from a
modern DevOps-enabled software factory.

 ….start your engines!

http://dx.doi.org/10.1007/978-1-4842-1842-6_6
http://dx.doi.org/10.1007/978-1-4842-1842-6_5
http://dx.doi.org/10.1007/978-1-4842-1842-6_7

I

 A
 Agile methods

 autonomous teams , 18, 19

 empowerment , 21–22

 iterative development , 149

 sprints , 114

 standup meetings , 31

 Agile operations

 craftsmanship , 111

 Agile requirements , 75, 80, 146, 148, 149

 Analytics

 App experience , 56, 77, 121

 business , 56, 117

 customer , 53, 159

 performance , 56, 117

 Application

 microservices , 23–25, 57,

109, 111, 126, 147, 153, 167

 monolithic , 21, 23–25, 109, 126

 supportability , 21, 25, 110, 112, 128, 136

 Application performance management

(APM)

 alerts and alarms , 61, 109

 baselining , 113, 120

 experience analytics , 56

 transaction tracing , 61

 Application programming interfaces (APIs)

 API gateways , 52, 57, 61, 62

 creation , 57, 58, 63

 deployment , 55, 57, 58, 67

 lifecycle , 53, 55–61, 65, 67

 mobile and SDK's , 60, 159

 monitoring , 54–57, 61–62, 128, 147

 security , 54, 55, 57, 59, 60, 63, 65

 B
 Bad practices

 normalized deviance , 152

 warning signs , 154

 Business

 models , 8, 10–12, 17,

32, 33, 64, 65, 106

 wicked problems , 15–17

 C
 Cloud Computing , 10, 15, 33, 155

 Constraint removal , 40, 73, 81–85, 167

 Containers , 20, 21, 109, 110, 128, 147, 153

 Continuous delivery

 maturity levels , 91

 Continuous integration

 build management , 90

 Culture

 collaboration , 44

 empathy , 29–30, 33

 integrity , 19, 79

 respect , 29, 33

 trust , 29, 33

 Index

© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6

172 Index

 D
 DevOps

 Action Plan , 100–102, 164–169

 in government , 8, 151, 161–164

 pipeline , 69, 95, 130, 132, 168–169

 toolchain , 76, 88, 95–98, 157

 E, F, G
 Enterprise architecture , 29, 122,

125–130, 133, 137, 155

 H
 Human resources (HR) , 155–158

 I, J, K
 ITIL

 Change Advisory Board , 134

 change management , 134, 135, 168

 co-existence with DevOps , 134

 incident management , 40

 problem management , 134, 168

 L
 Lean Startup , 8, 136–137

 Lean thinking

 value creation , 34–35

 M, N
 Mainframe systems , 81, 83, 84,

106, 121, 148, 163, 166, 167

 Metrics

 anti-patterns , 41–42

 domains and classes

 culture, collaboration

and sharing , 44

 customer and business value , 45

 efficiency and effectiveness , 44

 quality and velocity , 45

 lead time , 41, 45

 mean-time-to-recover (MTTR) , 44, 45

 Net Promoter Score (NPS) , 45, 46

 outcomes and actions , 137

 programs , 41, 43, 46, 47, 167–168

 targets and initiatives , 46, 47

 vanity , 42, 47, 154, 168

 Mobile testing , 76–77

 O
 Open source software , 20, 128

 P, Q
 Platform as a Service (PaaS) , 20, 22

 Programming languages , 19, 24, 157, 161

 R
 Regulatory compliance

 General Data Protection

Regulation (GDPR) , 78

 Release automation

 integrations , 96, 97, 99, 135, 169

 S
 Security

 privileged access , 59, 131, 135

 static code analysis , 130

 Security-minded DevOps , 133

 Service management , 36, 94, 133–136

 Service virtualization , 37, 38, 63,

71, 80–85, 97, 114

 Shift-left

 application monitoring ,

98, 115–118, 166, 169

 security , 131

 T, U, V
 Talent management

 DevOps skills , 155–159

 Test automation , 73–77, 80–81, 98

 Test data management

 data masking

and sub-setting , 79

 synthetic test data , 78, 79

 Test data warehouse , 79, 80, 149

 Testing trifecta , 73–85, 169

173Index

 W, X, Y, Z
 Waste–elements of

 defects , 35–38

 employee knowledge (unused) , 36, 40

 inventory , 36, 39

 motion , 36, 40

 non-value added processing , 35, 36, 39

 overproduction , 35, 38

 transportation , 35, 36, 39

 waiting , 35, 38–39

 Waste-removal , 37–40

 Waterfall development , 17, 76, 78, 156

	Contents
	Foreword
	About the Authors
	Acknowledgments
	Part I: DevOps: Conflict to Collaboration
	Chapter 1: DevOps in the Ascendency
	Accelerating Agile Practices in Today’s Software Factory
	Embracing DevOps in the Application Economy
	DevOps as a Critical Requirement
	Banking on DevOps Practices
	DevOps: A Key Component of Business Agility
	DevOps: A Practice for Champions
	Summary

	Chapter 2: IT Impasse
	A World of ‘Wicked’ Business Problems
	The Emergence of Agile Development
	Agile Empowerment Challenges

	Modern Application Architectures
	Microservices: Small Isn’t Always Beautiful

	Ending the Technical Impasse
	Summary

	Chapter 3: DevOps Foundations
	What Characterizes DevOps Culture?
	Focusing on Products over Politics
	Building Trust and Respect
	Increase Empathy Everywhere
	Open Communication Channels
	Additional Factors

	Lean Thinking to Reduce Waste
	Lean and Value Creation
	Eight Elements of Waste
	Waste Removal Strategies
	Prevent Defects by Removing Constraints
	Focus on Value to Prevent Overproduction
	Smoothing Flow to Reduce Wait Times
	Limit Non-Value Added Processing Through Data-Driven Insights
	Reduce Transportation Cost by Automating Deployments
	Eliminate Excess Inventory Across the Software Factory
	Prevent Unnecessary Motion with Parallel Development
	Incorporate Employee Knowledge Using Feedback Loops

	DevOps Metrics
	Anti-Pattern Metrics
	Suitability Checklist
	Metrics that Matter
	Culture, Collaboration, and Sharing
	Efficiency and Effectiveness
	Quality and Velocity
	Customer and Business Value

	Additional Methods and Techniques

	Summary

	PartII: Essential DevOps Tooling
	Chapter 4: Build
	Case Study: IceMobile
	From Little API Acorns Big Things Grow
	API Management: Stakeholders and Requirements
	APIs Are Products
	Managing the API Lifecycle
	Essential API Management Plays
	Create and Integrate APIs
	Secure the Open Enterprise
	Unlock the Business Value of Data
	Accelerate Mobile and IoT Development

	API Management: Essential Integrations
	API Performance Monitoring
	API Development and Testing

	Taking a Strategic Approach
	Building an API Future, Faster
	Summary

	Chapter 5: Test
	Case Study: AutoTrader.com
	Testing Times
	Agile Testing Trifecta
	Test Automation
	Incomplete Requirements Equals Faulty Software
	An Automated and Agile Approach
	Achieving Complete Test Coverage
	Case in Point: Mobile Testing

	Test Data Management
	Facets of a Gold Standard Solution
	Combining with Test Automation

	Test Constraint Removal

	Summary

	Chapter 6: Deploy
	Case Study: Citrix
	Obstacles to Continuous Delivery
	Development Challenges
	Operations Challenges
	Finding Common Ground

	Continuous Delivery Maturity
	Level 1: (Manual)
	Level 2: (Scripting)
	Level 3: (Automated)
	Level 4: (Continuous)
	Level 5: (Optimized)

	Accelerating Maturity: Three Ways
	The First Way: Connect End-to-End Release Management
	The Second Way: Operationalize Feedback Loops
	The Third Way: Optimize the Continuous Delivery Pipeline

	Essential Toolchain Integrations
	Release Automation: Capability Checklist
	Dependency Management
	Pipeline Visibility with Notifications
	Flexible Approval Processes

	Recommendations and Action Plan
	Demonstrate Business Benefits and ROI
	Execute Tactically, Grow Strategically

	Summary

	Chapter 7: Manage
	Case Study: ANZ Bank
	More Change, More Complexity
	New IT Operations Imperatives
	Proactive Engagement
	Designing for Failure
	Moving Beyond Resilience
	Making Support a Top Design Issue
	Active Monitoring

	Toward Agile Operations
	Shift-Left Monitoring
	Continuous High-Quality Feedback
	Intelligence and Analytics

	Agile Operations Tooling
	Early Warning for Business and Development
	Early Guidance on Operational Impact
	Prioritize by Business Impact and Customer Experience
	Feedback at Key Moments of Truth

	Summary

	PartIII: Tuning and Continuous Improvement
	Chapter 8: Practical DevOps
	DevOps and Enterprise Architecture
	Without Good Architecture IT Builds Software Slums
	Enterprise Architecture Must Adapt to the Times
	New Fluid Guidelines and Principles
	Actions to Establish EA in DevOps Programs

	DevOps and Information Security
	Rethinking Security Practices for DevOps
	Essential Characteristics of Security-Minded DevOps

	DevOps and IT Service Management
	DevOps and ITIL
	Overcoming Resistance

	DevOps and Lean Startup
	Summary

	Chapter 9: DevOps and Real World ROI
	Quality Is Everyone’s Responsibility
	Making a Case for DevOps ROI
	The Challenge of Measuring DevOps Success
	A Real-World Model for DevOps ROI
	Measuring the Impact of DevOps Automation
	The Whole Is Greater than the Sum of its Parts
	Step 1: Application Experience Analytics
	Step 2: Requirements and Test Case Design

	Summary

	Chapter 10: DevOps Finetuning
	Cultural Recalibration
	The Normalization of Deviance
	Combatting Sub-Optimal Behaviors

	DevOps and Talent Management
	So You Think You Can DevOps?
	Various Talent Management Hacks
	IT Apprenticeship and Graduate Intake Programs
	DevOps Hackathons and Coding Days

	DevOps and the Internet of Things
	DevOps for the Public Sector
	DevOps and Lean to Improve Government IT Outcomes

	Summary: The Seven Point Action Plan
	Understand the Business Goal
	Cultivate Senior Level Sponsors
	Select Your Pit-Crew
	Choose an Immediate Deliverable
	Build a Comprehensive Metrics Program
	Integrate DevOps with Existing Practices
	Automate the Pipeline; Strengthen the Toolchain

	In Salute of DevOps

	Index

